ABSTRACT PAGE, THE COMPLETE PAPER IS PUBLISHED IN Journal of Turbomachinery, Vol. 121, No. 4, Oct. 1999, pp. 717ff

VISCOUS AND INVISCID LINEAR/NONLINEAR CALCULATIONS VERSUS QUASI 3D EXPERIMENTAL CASCADE DATA FOR A NEW AEROELASTIC TURBINE STANDARD CONFIGURATION

T.H. Fransson, M. Jöcker Chair of Heat and Power Technology Royal Institute of Technology Stockholm, Sweden

A. Bölcs, P. Ott

Laboratoire de Thermique Appliquée et de Turbomachines Swiss Federal Institute of Technology Lausanne, Switzerland

ABSTRACT

This paper presents a new International Standard Configuration to be added to an already existing set of 10 configurations for unsteady flow through vibrating axial-flow turbomachine cascades. This 11th configuration represents a turbine blade geometry with transonic design flow conditions with a normal shock positioned at 75% real chord on the suction side. Out of a set of test cases covering all relevant flow regimes two cases were selected for publication: A subsonic, attached flow case and an off-design transonic case showing a separation bubble at 30% real chord on the suction side are published. The performed tests are shown to be repeatable and suitable for code validations of numerical models predicting flutter in viscous flows.

The validity of the measured data of the two public cases was examined and comparisons with other tests were conducted. Sometimes a large difference in aerodynamic damping was observed on cases with similar flow conditions. This was investigated at three transonic cases with almost identical inlet flow conditions and only small variations in outlet Mach Number. It was found that the differences in the global damping are due to very local changes on the blade surface in the shock region, which obtain a large influence by the integration because of the discrete measuring points. Hence it is recommended not to look at the global damping for code validations but more precisely to the local values. These show a common tendency, which is reproducible with different numerical methods.

This was demonstrated with a potential model, a linear Euler model, a nonlinear Euler model and a Navier-Stokes solver, all applied to predict flutter of each test case with a 2D/Q3D approach. The limitations of inviscid codes to predict flutter in viscous flow regimes is demonstrated, but also their cost advantage in attached flow calculations. The need of viscous code development and validation is pointed out. This should justify and encourage the publication of thoroughly measured test cases with viscous effects.

NOMENCLATURE

 A_i

aı	ea elements of data
p	oints i projected into
b	ending direction,
n	ormalized with c
(s	ign: on ss >0 , on ps < 0)

c cp	$\frac{(p-p1)}{(pt1-p1)}$	chord steady pressure coefficient	m -
$\tilde{c}_p(x,t)$	$\frac{c \cdot \widetilde{p}(x,t)}{h \cdot (pt1 - p1)}$	unsteady pressure coefficient	-
$\widetilde{c}_p, \widetilde{c}_{pi}$ e f h H		amplitude of unsteady pressure coefficient (1 st harmonic) probe distance frequency bending amplitude enthalpy	- Hz M J/kg/ K
IBPA, σ k	$\frac{2 \cdot \pi \cdot f \cdot c}{2 \cdot v_{2 \exp}}$	interblade phase angle reduced frequency based on half chord and experimental outlet velocity	deg. -
M p sf	$\frac{(pt1-p1)_{NOVAK}}{(pt1-p1)_{EXP}}$	Mach number pressure scaling factor in NOVAK	- Pa -
ν x XI, Ξ _h	$-\sum_i \widetilde{c}_{pi} \cdot A_i \cdot \sin \phi_i$	velocity chordwise coordinate aerodynamic damping due to bending >0: stable, <0: unstable	m/s m -
ß		relative flow angle	deg.
Ŷ		stagger angle	deg.
δ		bending direction phase of unsteady pressure	deg.
φ, φ _i , phi~		coefficient (1 st harmonic)	deg.
τ		pitch	m
Indices			
1		inlet	
2		outlet	
i		data point	
is t		isentropic total values	
tan		tangential	
~		unsteady perturbation	
		value (without steady part)	