
Standard Configurations-1992 / T. H. Fransson and J. M. Verdon / 6/21/01 1

Updated report on
"Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow

Turbomachine-Cascades"

Status as of July 1991.

Compiled by

T. H. Fransson& and J. M. Verdon%

ABSTRACT

As part of the Symposium series "Unsteady
Aerodynamics and Aeroelasticity of Turbomachines
and Propellers" a set of cascade standard
configurations, with emphasize on the unsteady
aerodynamics, was established [Bölcs and Fransson,
1986]. These have been used extensively by several
authors since the "Fourth Aeroelasticity Symposium"
in 1987. As both experimental and numerical
procedures presently undergo a rapid development it
was at that time recognized that a continuous update
of the standard configurations is a necessity.

The present report gives an overview of unsteady
experimental and theoretical flow models (as regards
to vibrating blades in cascades) that have appeared in
the open literature between the 1987 and 1991
Symposia on Aeroelasticity, together with a brief
description of the major findings presented by the
authors. The application domain presented for the
different prediction models is pointed out, and it is
concluded that the largest number of publications has
appeared in the domain of development of non-linear
computations. Viscous phenomena have started to be

included, in different ways, in prediction models, both
for actuator disk and flat plates, as well as for time-
linearized and fully time-dependent methods. Many
authors validate thoroughly their models against any
analytical results available, as well as against existing
experimental data. Unfortunately it must today be
concluded that, although some well documented
experiments have been presented in the last years, a
large need for detailed viscous flow data through
vibrating cascades exist.

The "Standard Configurations" have been updated in
the sense that three cascade geometries have been
reduced in importance, whereas one geometry has
been extended to include experimental data at high
incidence angles. The flat plate standard configuration
has been extended to include two supersonic
geometries that have been proven useful for
comparisons in the past. Finally, a new analytical
inviscid high subsonic/transonic compressor cascade
geometry is proposed as "Standard Configuration 10",
with the aim of detailed studies of shock wave
influences on the unsteady load on vibrating blades.

Figure illustrating aeroelasticity in axial-flow turbomachines
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NOMENCLATURE

Symbol Explanation Dimension

A Amplitude 
(A=h in pure sinusoidal bending) -
(A=α  in pure sinusoidal pitching) rad

A Fourier coefficient -
C(x) Camber distribution (eq. 3.10.2) -
c Blade chord m
  c  f  Real amplitude of unsteady force coefficient -
  c  f  ( t Unsteady perturbation force coefficient

vector per unit amplitude, positive in
positive coordinate direction -

c  h  Real amplitude of unsteady force coefficient -
c  h ( t Unsteady force coefficient in direction of

bending vibration, in traveling wave mode
c  h ( t ) =  c  p, i   

i 

  ∆  ( x / l ) i   
-

c  l Real amplitude of  unsteady lift coefficient -
c  l ( t Unsteady perturbation  lift   (= force normal

to chord) coefficient vector per unit amplitude, 
positive in positive y-direction -

c  m  Real amplitude of  unsteady moment
coefficient -

c  m  ( t )Unsteady perturbation moment coefficient
vector per unit amplitude, positive in
clockwise direction -

c  p ( x ) Real amplitude of unsteady pressure
coefficient -

c  p (x, t) Unsteady perturbation pressure
coefficient in traveling wave mode

 
c  p (x, t) = 1 

h 
 ·  p  ( x, t ) 

p  w 1  -  p  1
 =  c  p (x) ·  e i ( ω  t +  Φ  p) 

-
Steady-state pressure coefficient

 
c  p (x) =  p  ( x )

p  w 1  -  p  1
 

c   p   ( x ) Quasi-steady perturbation pressure
coefficient

c  p (x) =  1 
h 

 ·  
p  modified pitch  ( x ) -  p  nominal pitch  ( x )

p  w 1 -  p  1 -
c  w  Aerodynamic work coefficient per cycle

of blade vibration -
d Maximum blade thickness ratio -
e Distance between blades and measuring

station m
e  f  Unit vector in direction of force coefficient -
e  h Unit vector in vibration direction -
e  n Unit vector normal to blade surface -
e  n Unit vector tangent to blade surface -
e  x Unit vector in chord direction -
e  y Unit vector normal-to-chord -
f Blade vibration frequency Hz
f Function
h Channel height of test facility m
h Dimensionless ( with chord ) bending

vibration amplitude -

HC Height of camber-line at midchord
(eq. 3.10.2) -

HT Maximum (full) blade thickness, normal to
chord (eq. 3.10.1) -

H± Blade thickness on upper / lower surfaces
(Fig. 3.10.1)

i Complex notation = (-1)0.5

i Incidence angle, from mean camberline
at leading edge o

Im Imaginary part of complex value
k Reduced frequency, k = (c • ω) / (2 • vref) -
M Mach Number -
p Pressure mbar
R Radius of camber line (eq. 3.10.2) -

R Dimensionless (with chord) vector from
mean pivot axis to an arbitrary point on
the mean blade surface -

Re Real part of complex value
Re Reynolds number = (vref • c ) / ν -
t Time sec
t Blade pitch m
T Dimensionless time = t / T0 -
T0 Period of a cycle -
T(x) Blade (full) thickness distribution -
v Velocity m/sec
vref Reference velocity

vref=v1 for compressor cascade
vref=v2 for turbine cascade m/sec

w Relative flow velocity m/sec
x Dimensionless (with chord) coordinate

along chord -
X Dimensionless (with chord) blade surface

coordinate (eq. 3.10.3) -
xα Dimensionless (with chord) chordwise

position of torsional axis -
y Dimensionless (with chord) blade coordinate

normal to chord -
Y Dimensionless (with chord) blade surface

coordinate (eq. 3.10.3) -
yα Dimensionless normal-to-chord position of

torsional axis -
z Dimensionless (with chord) span wise

coordinate -

α Real amplitude of blade vibration pitching
amplitude rad

α  ( t ) Complex amplitude of blade pitching
oscillation rad

β Flow angle, measured from axial, positive
in direction of rotation deg

γ Chordal stagger angle, from axial deg
∆   c  p ( x )Real amplitude of unsteady perturbation

pressure difference -
∆   c  p ( x , t ) Unsteady perturbation pressure

difference coefficient in traveling wave
mode -

_ (x/l)i Normalized blade surface element
projected normal to the direction
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of vibration -
δ Blade  bending vibration direction

= tan-1(hy/hx) deg
ρ Density kg/m3

θ Angle of mean camber line (eq. 3.10.3) rad
θα(m) Phase lead of pitching motion towards

heaving motion of blade (m) deg
ν Kinematic viscosity m/sec

Ξ Aerodynamic damping coefficient -

Ξ  h = Im ( c  h ) for pure bending
σ Interblade phase angle. σ is positive

when blade "n+1" leads blade "n" deg
τ Dimensionless, with chord, pitch -
φ Phase angle. Positive when disturbance

leads blade "n" deg
ϕ Phase angle in Fourier series deg
ω Circular frequency of the blades rad/s

Subscript  
aero Aerodynamic damping
c Stagnation value in absolute frame of

reference
G Center of gravity
global Global values (=time-averaged + unsteady

perturbation)
global Global values along the whole blade (in

contrast to local below)
h Bending motion
i Pressure transducer "i"
ic Influence coefficient
LE Leading edge
loc Local values on the blade surface
mech Mechanical damping
p Pressure
ps Blade pressure surface
ref Reference value
s Isentropic
ss Blade suction surface
TE Trailing edge
twm Traveling wave mode
w Stagnation values in relative frame of

reference
1 Upstream flow conditions
2 Downstream flow conditions
1B First bending mode
- _ Values at "infinity" upstream
_ Values at "infinity" downstream
α Pitching motion
α Position of pitch axis

Superscript  
~ Time dependent perturbation values
- Time-averaged values
c Complex value (used only in ambiguous

contexts)
ls Lower surface of profile
m Blade number
m, n Influence of blade "m" on blade "n"
ps Pressure surface
ss Suction surface
us Upper surface of profile

Note:
A question as regards the definition of dimensionless
pressures have been brought up during some
discussions between different researchers working
with the standard configurations. It must be
remembered that all the standard configurations use
the time-averaged dynamic pressure ( p  w 1  -  p  1 ) as a
means to obtain non-dimensional pressure
coefficients, both for the steady-state and time-
dependent cases. However, as historically theoretical
models rather use the incompressible dynamic

pressure, (   ρ  -∞   v  -∞ 
 2

 / 2 ), at the upstream infinity for this
purpose, some of the authors have instead used the
latter value as dynamic pressure. In general it can be
stated the differences between the two definitions are
negligible for standard configurations 1 and 2
(incompressible flow). All participants have, as far as
the present authors are aware, employed the
compressible dynamic pressure for the standard
configurations 3-7. For standard configurations 8 and
9 it seems as if everyone has used the incompressible
definition, whereas for the 10th standard configuration
mixed responses have been received. As far as
possible, it has been tried to note the various
definitions in the text.

It is recommended to use the compressible definition
for all standard configurations in the future.
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1. INTRODUCTION AND OBJECTIVES

Vibration-related fatigue failures have been, and
remain, a major concern for turbomachine
manufacturers and operators worldwide. If such a
failure appears, it has major consequences, normally
in significant shut-down time of the machine and
sometimes in the loss of human life, and can become
extremely expensive. It is not probable that blade
vibration problems will disappear in the next few years
while, although the quality of design methods
increases, manufacturers constantly push the
aerodynamics and materials used for blades into
higher performances. Modern turbomachine blades
are thus constantly at the high end of possibilities of
the materials employed.

The two most important blade vibration problems are
the forced vibration, which is a flow interaction
between the rotor and the stator, and the blade flutter,
which is a self-excited vibration. The correct prediction
of the unsteady forces from both these phenomena is
essential to an acceptable design of fans and
compressors, as well as turbines.

Evidence of a tremendous improvement in predicting
the unsteady aerodynamic behavior of the high-speed
flow through vibrating turbomachine-cascades,
together with an increase in the number of well
documented experimental data, can be found in the
literature during recent years. Furthermore, two
excellent review manuals concerning the important
aeroelastic effects in axial-flow turbomachines have
recently been published [Platzer and Carta; Editors,
1987, 1988].

The agreement between theoretical and experimental
results in the domain of turbomachine blade
aeroelasticity ranges from extremely good to
extremely bad, depending on such factors as
geometry and flow conditions, but also on
experimental procedure and numerical method.
Generally it can be concluded that the low subsonic
attached flow can be reasonably well measured and
predicted (whereas the transonic flow conditions on
realistic profile types show discrepancies between
theory and experiments) and that virtually no data or
prediction models are available for separated flow
conditions. A large need exists thus for both well
documented experimental test cases and for
appropriate prediction models.

Within the framework of the symposia "Aeroelasticity
in Turbomachines" [1976, 1980, 1984, 1987, 1989,
1991] a workshop, with the aim to define the state-of-
the-art of prediction models and experimental test rigs
for unstalled two-dimensional cascade flow, was
performed with the conclusion that several successes
could be found but that also some significant
differences, both between theories and experiments
and between different prediction models, had to be
documented [Bölcs and Fransson, 1986].

At the outset of the present workshop (1980) no well-
documented comparisons existed between different
theoretical models and experimental data. A wide
scope of different "standard configurations" was thus
established, and different aeroelastic sample cases
within each standard configuration were defined, with
the obvious objective to better define and eventually
reduce/extend the aeroelastic sample cases in a later
phase of the project as possibilities and limitations of
prediction models and experimental data became
clearer.

At the 1987 Aeroelasticity symposium a task force2

was thus created with the objectives to:
• follow up the literature on new experimental and

theoretical procedures
• redefine the standard configurations to evolve

together with the present need of aeroelastic
information in transonic and high incidence flow
regimes

• reduce, where possible, the number of aeroelastic
sample cases for unstalled flow

• seek explanations for agreements and
disagreements between prediction and experiment

• present an updated version of standard
configurations at the 1991 aeroelasticity meeting.

The present note constitutes a documentation in this
context. First, an attempt to give a brief, certainly non-
exhaustive, overview about new experimental and
numerical results on unsteady flow through vibrating
axial-flow turbomachine cascades that has appeared
in the open literature during the years 1987-1991 is
made. The purpose of this is to guide researchers
through the large amount of literature in connection
with validation of experimental, theoretical and
numerical procedures for the field of interest
discussed here and to indicate some of the
conclusions the respective authors have found
important. We apologize to anyone who's
contributions have not been mentioned.

Secondly, some of the standard configurations, as
defined in the 1986 report [Bölcs and Fransson,
1986], have been reduced in importance3. Of the
remaining configurations the number of aeroelastic
cases has been modified, whereas one more
configuration has been added in order for the sample
cases to better reflect the fields in which basic
research is needed today. Furthermore, some authors
have recently asked for more information on time-
dependent stalled and partially stalled flow. To this
end the fifth standard configuration has been
extended with a few such aeroelastic sample cases. It

                                                
2 S. Fleeter, E. Széchényi, J. M. Verdon, T. H. Fransson.

3 This corresponds to those with small participation or presently small
industrial interest. (Standard configurations 2, 3 and 6 have been reduced
in importance.)
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is foreseen that the standard configurations also in the
future will be extended to stalled flow conditions as
soon as detailed data on separated flow becomes
available. It is hoped that this will happen in the near
future.

Finally, as one of the objective of the present study
was to solicit comparison of results during the 1991
Symposium on Aeroelasticity, some results which
have been published on the standard configurations in
the years 1987-1991 have also been included in the
present note.

It is hoped that as time goes on researchers will find it
useful to compare more and more of their results on
specific sets of test cases, as only through such a
broad comparison will it be possible to assess

possibilities and limits of different experiments and
predictions. Through this the different results
(experimental, numerical, analytical) can also be used
towards the ultimate goals of understanding the
physical phenomena involved in aeroelasticity in axial-
flow turbomachines and design blades with optimal
unsteady forces. To facilitate the comparisons for
everyone interested, it is recommended that new
results should be sent to the first author of the present
report to be incorporated in the data base. This will
help to judge if (and why) fundamental differences
appear between experiments and predictions.

The authors express their gratitude to everyone who
participates in the study, and apologizes for any errors
that may have slipped into the data that are
represented in the appendices.

2. OVERVIEW OF UNSTEADY INTERNAL FLOW INVESTIGATIONS DURING 1987-1991.

In the years 1987-1991 a large amount of information
on unsteady flow through vibrating axial-flow
turbomachine blade rows has appeared in the open
literature.

As mentioned above the AGARD "Manuals on
Aeroelasticity in Axial-Flow Turbomachines" [Platzer
and Carta, Editors, 1987 (Vol. 1), 1988 (Vol. 2)]
provide an excellent overview of the state-of-the-art in
the field, both as regards to experimental techniques
and as to prediction models.

The fourth, fifth and sixth "Symposium on Unsteady
Aerodynamics and Aeroelasticity of Turbomachines
and Propellers" were held in Aachen, Germany on
September 6-10, 1987 [Gallus and Servaty, 1988],
Beijing, China, on September 18-21, 1989 [Pan et al,
1989] and Notre Dame, USA [Atassi, 1992],
respectively, and an AGARD Propulsion and
Energetics Panel meeting on "Unsteady Aerodynamic
Phenomena in Turbomachines" took place in
Luxembourg on August 28-30, 1989 [AGARD, 1989].

A symposium on "Transonic Unsteady Aerodynamics
and Aeroelasticity" [Bland, 1987] was held at NASA
Langley Research Center on May 20-22, 1987. Most
of the presentations are concerned with aeroelastic
effects in external flow, but some also treat cascade
effects.

Bendiksen [1990] reviews the areas of unsteady
cascade flow, structural modeling and flutter prediction
models, from the theoretical point of view, and gives
examples of important parameters from a large
literature base (126 references). He states that with
the decreasing computing costs the way to perform
complete aeroelastic (i.e. interactively coupled
structural and fluid) predictions on parallel super
computers will be changed to incorporate novel
approaches in the future.

The literature survey below gives indications about
publications concerning experimental and theoretical
investigations on flow through cascades with vibrating
blades, as well as experimental studies of the viscous
flow around isolated airfoils vibrating in wind tunnels.
These latter experimental studies on isolated airfoils
are included as data on viscous phenomena in
cascades are still today fairly rare and the isolated
airfoil experiments may be of use for understanding
and predicting unsteady viscous flow in cascades.
Computational efforts on isolated airfoils are however
not included. On the other hand, numerical
computations on nozzle flows with oscillating shock
waves are mentioned as non-linear effects can
relatively well be studied in such geometries, and
comparisons with linearized asymptotic theories are
possible. Purely structural aspects of the
aeroelasticity, although extremely important, have not
been included as the emphasis of the working group
has, from the start, been put on relations with the
unsteady flow. It should finally be noted that the study
treats axial flow turbomachines and that, thus,
aeroelastic effects on centrifugal impellers and
helicopter rotors are not included.

2.1 Experimental Studies

Several experimental investigations have been
presented in the open literature since the Aachen
Symposium in 1987 [Gallus and Servaty, Editors,
1988]. A small attempt is here made to give an
overview of these, with the reservation that other
experiments, not reported here, certainly have been
performed. The objective is only to give a
comprehensive view of the experiments and the main
findings put forward by the authors, and not to discuss
the results in detail. The publications the present
authors have come across in this field are presented,
for a quick reference, in Table 2.1, together with the
main cascade and aerodynamic characteristics.



Standard Configurations-1992 / T. H. Fransson and J. M. Verdon / 6/21/01 7

Rotating blades:  

Kurkov and Mehmed [1991] present unsteady
displacements, as a function of frequency, during
flutter of an unducted, composite, fan model under
transonic flow conditions. They show the stability limits
of a counter rotating rotor and  indicate that high
incidence was found to be destabilizing. Mehmed and
Murthy [1991] show the aeroelastic response of the
blades for two mistuned propfan rotors, for a wide
range of off-axis flow angles, blade pitch angles and
rotational speeds. They indicate that an inherent
random mistuning gave a large, intuitively
unpredictable, variation in the aeroelastic response.
The intentional alternate mistuning was beneficial for
the aeroelastic response.

A parametric investigation about the flutter
characteristics on a sub-velocity scaled propfan rotor
was performed by Crawley and Ducharme [1989].
They find that the unsteady aerodynamic forces
significantly modify the frequencies at speed for this
kind of blades, even well below the flutter speed. It is
concluded that the dominating flutter mechanism is
the modal coalescence in a single blade and not the
highly aerodynamically coupled single mode cascade
flutter of turbofans.

Song et al [1989] summaries experiments on a series
of rotors in a single and double-stage transonic
compressor facility. Factors influencing stall flutter,
such as blade clearance, airfoil geometry, mistuning
and inlet distortions, are studied. It is concluded that
the aeroelastic stability of the rotor can be improved
by changing the radial clearance or the inlet distortion.

Chen [1989] discusses a case of non-synchronous
vibrations of shrouded blades in a steam turbine under
field operation. He concludes that the vibration
occurred only in a narrow region characterized by
constant moisture lines and that the aeroelastic
phenomena is caused by interaction with the
condensation, and possibly with the shock and
boundary layer.

Non-rotating cascades:  

A review of the latest years work performed on linear
compressor cascade flutter at ONERA has been given
by Széchényi and Cafarelli [1989]. They conclude that
the pressure surface has essentially no influence on
the instabilities for subsonic flow and that an increase
of incidence decreases the stability margin of the
cascade. For supersonic flow conditions their
experience indicate that the shock waves are
important sources for pressure fluctuations when the
blades oscillate.

Buffum and Fleeter [1991, 1990, 1989a,b,c, 1988]
(see also Buffum [1990]) have continued their

investigation of the high subsonic and low transonic
flow on a linear cascade consisting of nine
uncambered biconvex airfoils (8% thickness)
oscillating in torsion at realistic reduced frequencies.
One of the objectives of these investigations was the
experimental validation of the superposition technique
(of "single blade oscillation" to obtain results for the
"traveling wave mode" [Hanamura et al, 1980;
Crawley, 1984)) for compressor blades undergoing
torsional vibrations in attached flow. The results
indicate, in most subsonic sample cases shown,
relative good trend wise correlation with an analytical
flat plate model. They also show that reflections from
the nozzle liners in their linear cascade facility may
influence the experimental results for certain
interblade phase angles [Buffum and Fleeter, 1991].
This can eventually explain some differences found
between the traveling wave mode and influence
coefficient results.

The above mentioned superposition (or "influence
coefficient") principle has also been validated
experimentally, in detail, for annular turbine cascades
oscillating in bending mode (at reduced frequencies
realistic for last stages of modern steam turbine and
industrial gas turbine blades) by Schläfli [1989; see
also Bölcs et al, 1989a]. These results show an
extremely good agreement for three different types of
cascades, over a large Mach number range of
subsonic, transonic and supersonic outlet flow
conditions and over 20 interblade phase angles. The
results were obtained for cascades and flow
conditions for which the acoustic resonances (based
on linear flow theory) in the up- and downstream flow
are fairly close to each other and no attempt was
made to investigate the influence of the acoustic
resonance. The results indicate that, in most cases in
an annular set-up, it is sufficient to consider 2 blades
on each side of the reference blade in order to capture
most of the time-dependent aerodynamic cascade
coupling effects in annular test facilities. However, the
authors state that it is probably necessary to have
more blades in the cascade in order to avoid
reflections from the wind tunnel walls.

Kovats [1991] presents experimental transonic flow
data, obtained with the "influence coefficient
technique" in a turbine test facility with three blades in
the cascade, with the middle blade vibrating. Several
cascades are investigated and the author has put all
the data into a data base for design purposes.
Interpolations from this data base are made to obtain
influence coefficients for blade shapes and flow
conditions similar to the empirical results in the data
base. The author states that predictions by "FINSUP"
[Whitehead, 1990] approximate the empirical data
obtained.

Hanamura and Yamaguchi [1988] used the "influence
coefficient technique" to determine the unsteady
moments on linear turbine cascades oscillating in
torsion at transonic outlet flow conditions. They state
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that measurements on two blades upstream and four
blades downstream of the oscillating blades should be
enough to capture the main unsteady aerodynamic
coupling effects.

In a similar way, Schläfli [1989] (see also Bölcs et al
[1989b]) indicate that, for sub- and supersonic outlet
flow conditions on three annular turbine cascades
studied in bending mode, the influence of a blade on
itself is an "eigen-damping", but that an instability may
arise because of the aerodynamic coupling effects
between, essentially, the reference blade and its
immediate suction surface neighbor. For transonic
outlet flow velocities they observe a clear destabilizing
effect of the normal shock wave on the blade itself. It
is furthermore observed that the largest time-
dependent coupling effects appear in the part of the
blade passage which is overlapped, a statement
which is also made by Ezzat et al [1989a,b] and
Fransson [1990] on another type of transonic turbine
geometry. The last author also indicates that the
driving forces for an overlapped steam turbine
cascade at realistic reduced frequencies and transonic
flow conditions can partly be explained by quasi-
steady cascade effects involving the correlation  
between shock movements and the immediate
vibrating neighbor blades.

Kobayashi [1989, 1988] has presented unsteady
aerodynamic results on vibrating turbine and
compressor cascades under transonic flow conditions,
over a large range of reduced frequencies in torsion.
These studies are performed in an annular non-
rotating test facility, operating in freon. The
compressor cascade (non-symmetric DCA-profiles)
results indicate that the region of unstalled flutter
changes significantly when the flow in the blade
passage becomes transonic and that shock
movements due to blade oscillations generate
markedly large time-dependent forces which
stimulated and damped the blade oscillation for low
and high reduced frequencies, respectively. The
results on the turbine cascade investigated
[Kobayashi, 1988] indicate also that the shock wave
motion can either damp or excite the blade vibration,
depending on the interblade phase angle of the
cascade vibration.

Watanabe and Kaji [1989, 1988] have investigated,
with the vortex lattice method, the unsteady
aerodynamic response, at low flow speeds, to tip
clearance changes on a straight cascade in a linear
test facility. These results indicate that the effect of a
variation of tip clearance is largest for unloaded
blades, and that the tip clearance induced unsteady
aerodynamic forces are considerably suppressed by
the steady-state blade loading. The aerodynamic
damping force was most strongly influenced when the
interblade phase angle was 180 degrees.
Quantitatively good agreement with experimental
results is found for the aerodynamic damping
coefficient at tip clearances larger than 1.7%, whereas

the theory did not agree with data for lower tip
clearances. The authors' state furthermore that, from
the theoretical results obtained, the influence of the tip
clearance on the unsteady aerodynamic forces is
similar for low and high reduced frequencies.

Kaminer et al [1989] show experimentally obtained
unsteady aerodynamic forces from a subsonic shear
flow interacting with three vibrating compressor blades
in a linear cascade. It is concluded that the shear flow
can decrease the unsteady aerodynamic forces on the
cascade.

A new cascade wind tunnel, for subsonic flow, has
recently been taken into operation at the DFVLR in
Göttingen, Germany [Kiessling and Hennings, 1991].
It can accommodate 11 compressor blades with a
span of 200mm and a chord of 150mm. The blades
being tested presently consists of NACA 65 series
airfoils, and both "self-started" and controlled vibration
modes can be obtained.

Giordano and Fleeter [1990] presents a study,
conducted on a water table, of oscillating airfoil shock
phenomena for supersonic axial flow at high reduced
frequencies. They indicate that the phase of the bow
shock motion is dependent on the interblade phase
angle and the amplitude of the oscillation, and that the
magnitude of shock motion is a strong function of the
reduced frequency.

Detailed studies of some effects, like unsteady flow
separation and dynamic stall has not up to now, to the
authors' knowledge, been reported for cascade flow.
Recently, such results have however been presented
on single airfoils in nozzles.



Standard Configurations-1992 / T. H. Fransson and J. M. Verdon / 6/21/01 14:35 A6/P6 9

First author Flow  type Number  and Thickness Camber Chord Span Stagger Solidity Reynolds Torsion/ Red. freq. Type of Blades Working
                                           type of airfoil    (d/c, %)      (deg)     (mm)   (mm)    (deg)         (-)           No. (-)      Bending        (k,-)         facility    vibrated      fluid   
Kurkov Trans Propfan Different DifferentTwisted Diff Diff Diff Mainly B Unduc. Flutter Air
1991 over span over span fan
Mehmed Trans 8 Different DifferentTwisted Bending
1991 Propfan over span over span Torsion
Crawley Sub 2-12 Different DifferentTwisted Variable Variable Coupled 0.14 Rotating All Air
1989 M1, M2<1 Propfan (at 80%)
Song Sub Compressor Different Different 31 at 77 Torsion 0.05 (B) Rotating All Air
1989 (1+2 stages) over span over span tip Bending 0.16 (T)
Chen Trans Steam 2nd Rotating Steam
1989 turbine bending Linear
Buffum-88 Sub, trans 9 7.6 0. 76.2 97.8 53 1.3 Torsion 0.22, 0.39 Linear 9,1 Air
-89a,b,c M1, M2<1 Compressor 0.32, 0.46
-90,-91
Kobayashi Sub, trans 16 12.4 60.1 72 25 45.1 1.24 Torsion 0.04-0.55 Annular 16 Freon
-88,-89 M1<1, M2<>1 Turbine
Kobayashi Sub, trans 16 4 6 72 25 58 1.24 Torsion 0.03-0.46 Annular 16 Freon
-89 M1>1, M2<1 Compressor
Watanabe Low  sub 1, 8 10 0 60 180 -, 45 -, 1.0 Bending 0.10,0.13 Linear 1 Air
-88, -89 M1, M2<<1 Flat plate 0.30
Hanamura Sub, trans 11 10 50 80 60 1.25 Torsion 0.1-0.8? Linear 1 Freon
-88 M1<1, M2<>1 Turbine
Hanamura Sub, trans 11 55.6 80 54 1.39 Torsion 0.1-0.7? Linear 1 Freon
-88 M1<1, M2<>1 Turbine
Ezzat Sub, trans 20 5.1 6.5 78 40 65 1.38 _1.2x106 Bending 0.06-0.13 Annular 20 Air
-89a,b M1<1, M2<>1 Turbine
Fransson-90
Schläfli-89 Sub, trans 20 10 49.2 78.5 40 49 1.39 7-13x105 Bending 0.14-0.21 Annular 20,1 Air
Bölcs M1<1, M2<>1 Turbine
-89a,b
First author Flow  type Number  and Thickness Camber Chord Span Stagger Solidity Reynolds Torsion/ Red. freq. Type of Blades Working

type of airfoil (d/c, %) (deg) (mm) (mm) (deg) (-) No. (-) Bending (k,-) facility vibrating fluid
Table 2.1: Continued (1 of 2).
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 First author Flow  type Number  and Thickness Camber Chord Span Stagger Solidity Reynolds Torsion/ Red. freq. Type of Blades Working
type of airfoil (d/c, %) (deg) (mm) (mm) (deg) (-) No. (-) Bending (k,-) facility vibrated fluid

Schläfli-89 Sub, trans 20 17 45 74.4 40 56.6 1.35 _7x105 Bending 0.08-0.13 Annular 20,1 Air
Bölcs M1<1, M2<>1 Turbine
 -89a,b
Schläfli-89 Sub, trans 20 5.2 14 52.8 40 73.4 0.93 Bending 0.08-0.17 Annular 20,1 Air
Bölcs M1<1, M2<>1 Turbine
-89a,b
Széchényi Sub, trans, 7-9 Different 80- 120 Different Different Torsion _0.3 at Linear 1 Air
-89 Super Compressor 100 Bending M=1
Kovats Sub, trans 3 Variable Var Var Var Var B, T, 0.23-1.86 Linear 1 Air
-91 Turbine coupled
Kaminer Subsonic 5 30, 45 0.75- 0.03-0.1 Linear 3 Air
-89 Compressor 1.25
Kiessling Sub 11 6 10 150 200 45 Bending Linear 9 Air
-91 (incompr) Compressor Torsion
Yamamoto Sub, trans 1 10, 12 0 75 75 - - Torsion _0.6 Nozzle 0 Air
-89 M1<1, M2<>1 Single blade
Carr-89,-90 Sub 1 12 0 75 250 - - Torsion Max 0.15 Nozzle 1 Air
-91 M1, M2<1 Single blade at M=0.5
Chandrasekhara
-89,-90,-91
De Ruyck Sub 1 - - 0.3•106 Torsion 0.3 Nozzle 1 Air
-89 Single blade
He-91a Sub 1 - - Torsion 0-0.69 Nozzle 1 Air

Single blade
Currier-91 1 - - Torsion Nozzle 1 Air

Single blade
Giordano Super 1, 5 7.6 0 254 - Torsion 0-2.75 Water All Water
-90 M1<>1, M2>1 Compressor table
First author Flow  type Number  and Thickness Camber Chord Span Stagger Solidity Reynolds Torsion/ Red. freq. Type of Blades Working

type of airfoil (d/c, %) (deg) (mm) (mm) (deg) (-) No. (-) Bending (k,-) facility vibrating fluid
Table 2.1: Experimental unsteady  aerodynamic investigations on vibrating blades 1987-1991.
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Isolated airfoils:  

An investigation towards the understanding of self-
oscillating flow around an isolated fixed airfoil in
nozzles has been performed by Yamamoto and
Tanida [1989]. Their measurements of the shock
wave, wake motions and unsteady pressure field
indicate that the pressure disturbances induced by the
oscillation of the boundary layer separation (close to
the trailing edge of the blade) propagate upstream in
the main flow and force the shock to oscillate.

Carr et al [1989; 1990] (see also Carr and
Chandrasekhara [1989], Chandrasekhara and Carr
[1989], Chandrasekhara and Brydges [1990] and
Chandrasekhara and Platzer [1991]) present results
on a dynamically stalled isolated airfoil in subsonic
compressible flow. They indicate that the dynamic stall
vortex occurs at significantly lower angles of attack as
the Mach number increases. On the other hand, an
increase in reduced frequency helps in retaining the
dynamic stall vortex on the airfoil surface to higher
angles of attack. Furthermore, an increase in the
blade oscillation amplitude delays deep stall to higher
angles of attack. From real-time interferograms
obtained, Carr et al [1991] concludes that the dynamic
stall develops as a region of strong gradients
enclosing a region of low energy while still supporting
the dynamically modified outer flow associated with
the increase of lift that is typical of dynamic stall.

Low speed unsteady flow, at high incidence, over a
two-dimensional NACA-65 airfoil oscillating in torsion
at 2o amplitude and at reduced frequencies up to 0.69
is reported by He and Denton [1991a]. They show
detailed measurements of unsteady surface pressure
and skin friction coefficients and indicate that the
aerodynamic moment coefficient changes from stable
to unstable close to the dynamic stall phenomena. De
Ruyck et al [1989] present experimental data on
velocity profiles and Reynolds stresses, for both
leading edge and trailing edge separations, on an
isolated airfoil in low speed flow at a reduced
frequency of 0.3 and a Reynolds number of 300’000.
Leading edge stall is found to be triggered by the
bursting of the leading edge bubble soon after the
static stall limit is exceeded. The authors did not
observe any interaction with the trailing edge
separation during this phenomena.

An overview of several earlier published dynamic stall
data on isolated airfoils is given by Currier and Fung
[1991]. Based on the experimental results they
conclude that the onset of dynamic stall depends
whether the flow is sub- or supercritical. The
accompanying analysis supports that stall onset is the
consequence of the bursting of the separation bubble
and that this bursting is promoted by the upstream
biased pressure gradient which shifts the bubble to a

more laminar environment when the outer flow
becomes locally supersonic.

2.2. Theoretical studies

The "theoretical" articles presented between the
Aachen and Notre Dame Symposia and reviewed
here can be separated into four main parts, in which:
• actuator disk models
• linearized methods, both as regards to the airfoil

(flat plate) and the time-dependency,
• models linearized in time but non-linear in space
• fully non-linear models
are either developed or used as tools for studies of
certain phenomena. Most of the studies have treated
inviscid flow, but viscous cascade investigations are
coming into use.

As regards to general theoretical studies of time-
dependent cascade flow, Verdon [1989a] has given a
detailed analytic description of the unsteady response
far up- and downstream of an isolated two-
dimensional cascade. The far-field solution given can
be implemented into numerical time-linearized
analyses developed to predict the aerodynamic
response of the blading to prescribed small-amplitude
unsteady excitations (blade motions, incident entropic,
vortical and acoustic gusts). In a similar context, Giles
[1989] develops non-reflecting boundary conditions,
for the Euler equations, that are exact (within the
assumption of linear theory) for unsteady one-
dimensional and steady two-dimensional, and
approximate for unsteady two-dimensional, flows. He
concludes that the non-reflecting steady-state
boundary conditions increase the accuracy of the
calculation for flows with shocks extending out of the
computational domain. However, no large
improvements in accuracy (over the one-dimensional
non-reflecting boundary conditions) could be found in
the unsteady sample application with the new
improved boundary condition treatment.

Quiniou [1989] has given a brief overview of the
different computational methods employed at
SNECMA for prediction of flutter.

Actuator disk and flat plates:  

Chiang and Fleeter [1989a,b] developed a first order
mathematical model to demonstrate the enhanced
torsion mode stability associated with alternate blade
circumferential aerodynamic detuning in an
incompressible flow field, based on the aerodynamic
influence coefficient technique. Good agreement with
flat plate analytical results and experimental data
(among others "Standard Configuration 1") is shown
for blades vibrating in the traveling wave mode
[Chiang and Fleeter, 1989b]. The model is thereafter
applied to a 10% alternate circumferential spacing
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detuning and it is concluded that aerodynamic
detuning is a viable passive control mechanism for the
torsion mode flutter [Chiang and Fleeter, 1989a]. This
complements previous results by Topp and Fleeter
[1986] for aerodynamic detuning in supersonic flow.

The enhancement of aeroelastic detuning on the
stability in unstalled supersonic flow, with subsonic
leading edge locus, was studied by Fleeter and
Hoyniak [1989]. They investigated the effects of
different combinations of two aerodynamic detunings
as well as blade structural detuning. The authors
conclude that, from an application based on Verdon’s
"Cascade B" [Verdon, 1973] flow geometry,
aeroelastic (i.e. combined structural and
aerodynamical) detuning appears to be a viable
passive control mechanism for supersonic unstalled
flutter. Similar conclusions are put forward, for
supersonic throughflow cascades, by Spara and
Fleeter [1989; 1990]. They state, however, that for
certain cascade geometries the purely aerodynamic
detuning resulted in decreased stability.

Kielb and Ramsey [1988] apply a combination of three
unsteady flat plate cascade theories4 together with a
structural model consisting of a two degree of freedom
oscillator suspended by bending and torsional springs
to predict the flutter of an advanced supersonic axial
flow fan. They conclude that supersonic axial fan and
compressor blades are susceptible to a strong
torsional mode flutter at low reduced velocities and
that the worst pitching axis location is slightly
upstream of mid-chord. A pure weak plunging
instability was found at low supersonic velocities, but
was considered of little practical interest. It was
concluded that the stability is strongly dependent on
solidity and weakly dependent on stagger angle.

The unsteady supersonic flow computer code used in
this investigation is presented by Ramsey and Kielb
[1987]. Ramsey [1991, 1989] gives an engineering
extension of this model to include non-linear effects of
thickness and camber. His results indicate that the
inclusion of thickness, with or without camber, may
increase or decrease the aeroelastic stability,
depending on the airfoil geometry and operating
conditions, and may change the critical interblade
phase angle.

A modification of this aerodynamic model to include
non-rigid blade vibrations is introduced by Jacquet-
Richardet [1990] and Jacquet-Richardet and Henry
[1990], and combined with a finite element structural
model derived from Lagrange’s equations. The
importance of considering non-rigid blade vibrations
for the third and higher modes is shown in examples.

                                                
4 Lane [1957] for supersonic flow, Adamczyk and Goldstein [1978] for

transonic and Rao and Jones [1976] for subsonic conditions.

Iminari and Kaji [1989] reports a study on the
influence of three-dimensional loading and twist, as
well as three-dimensional vibration modes, on the
unsteady characteristics of vibrating blades in
incompressible flow. Their results indicate a significant
difference towards two-dimensional strip theory
predictions at lower reduced frequencies, especially
for highly loaded and staggered cascades, and that
the treatment of the three-dimensional vibrating
modes can be critical in determining the flutter
boundary. However, the differences towards the two-
dimensional theory decrease, in their study, for higher
reduced frequencies.

The double linearization theory in two-dimensional
sub- and supersonic flow has been applied to nonrigid
blade vibrations, for lightly loaded cascades, by
Namba and Toshimitsu [1990], Namba and Li [1990]
and Toshimitsu et al [1990, 1989]. The results indicate
that the unsteady work for section deformation is
largely influenced by steady-state loading and that
chordwise displacement for translational oscillations
may be either stabilizing or exciting, depending on the
phase difference between the chordwise and normal-
to-chord oscillation. Furthermore, the effect of
chordwise displacement is opposite for subsonic and
supersonic cascades. Results from the theory
covering three-dimensional subsonic flow through
annular cascade blades are presented by Namba et al
[1989; 1988] and compared to strip theory
calculations. The authors conclude that three-
dimensional effects are important for high Mach
numbers and when the steady loading increases from
hub to tip. They state that the strip theory
approximation fails to predict instability for some flow
configurations.

A three-dimensional lifting surface theory for annular
cascades with swept blades, without thickness and
steady loading, is presented by Kodama and Namba
[1990; 1991] for subsonic and transonic flow,
respectively. They find that the magnitude of total
aerodynamic work due to blade vibrations is reduced
at large sweep angles. Chi [1991] uses a similar
theory to study the unsteady aerodynamic pressure
loads on oscillating blades of a ducted subsonic fan.
Also this model treats blades without thickness and
steady-state loading. The author concludes that three-
dimensional effects on swept blades are important,
both for low and high aspect ratios, in the latter case
as, generally, the radial variation of the vibration mode
shape is large enough to trigger significant span wise
unsteady flow interactions.

Butenko et al [1989] discuss the unsteady two-
dimensional and three-dimensional linearized flow
around lightly loaded vibrating turbomachine blades,
in which a set of integral equations are solved. Both
subsonic, transonic and supersonic flow is discussed.
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Incompressible two-dimensional, unstalled and
stalled, flow in a cascade of thin curved high solidity
plates is studied by Saren [1989]. He uses an
asymptotic Kernel function theory, together with an
oscillating stall zone model, to arrive at a qualitative
analysis of the change of stall flutter limit with
aerodynamic loading. Duan and Zhou [1989] present
the initial phase of a small perturbation stall flutter
theory for incompressible flow, based on an isolated
airfoil stall model by Perumal and Sisto [1974].

Chen et al [1989] uses Whitehead’s [1962]
incompressible flat plate theory together with a
structural model to study the flutter boundaries of
several parameters, such as blade mistuning, coupling
of disk-blade and  location of the elastic axis. It is
concluded that mistuning has a stabilizing effect and
that coupling of blade and disk can decrease the
stability. Yue et al [1989] use a two-dimensional
unsteady aerodynamic model to get the aerodynamic
influences for the finite element structural dynamics
analysis presented. They conclude that coupling
effects of modes decrease the stability of the blade
and that the interblade phase angle has a large effect
on the aeroelastic response.
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Application Special study
˝
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
                                                                                                                             phase                                          (k,-)                           vibrat.                                                      
Verdon Time-linear Inviscid 2D Sub Compr - Torsion No No Boundary
-89a Potential Trans Bending conditions
Giles-89 Non-linear Inviscid 2D - No No Boundary

Euler conditions
LiuVariational Inviscid 2D Trans - No No Basic theory
-89 principles FE
Chiang Inviscid 2D Incom Flat - Aerodynamic
-89a,b plate detuning
Hoyniak Inviscid 2D Super Flat - Aerodynamic
-89 plate detuning
Spara Inviscid 2D Super Flat - Aerodynamic
-89,-90 plate detuning
Ramsey-87 Inviscid 2D Sub Flat No Yes - Coupled Yes No Red. freq.,
Kielb-88 Trans plate No Yes pitching axis

Super
Ramsey-89 Inviscid 2D Sub Thick- Small Yes - Coupled Yes No Thickness
-91 Trans ness Small Yes effects

Super
Ramsey-87 Inviscid 2D Sub Flat No Yes - Coupled Yes No Red. freq.,
Kielb-88 Trans plate No Yes pitching axis

Super
Jacquet Inviscid 2D Super Flat No Yes - Coupled Yes Yes Structural model
-90, -90 plate No Yes
Iminari-89 Inviscid 3D Incom Flat No Yes - No No 3D vibrating

plate No Yes modes important
Namba-90 Double Inviscid 2D Sub Flat No Yes - No No 3D effects
-89, -88 linearization 3D Super plate No Yes important at high M
Toshimitsu Double Inviscid 3D Sub Flat No Yes - No No
-89,-90 linearization Super plate No Yes

Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Table 2.2: Continued (1 of 7)
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Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
                                                                                                                             phase                                          (k,-)                           vibrat.                                                      
Kodama-90 Lifting Inviscid 3D Sub Flat No Yes - No No Sweep
-91 surface Trans plate No Yes
Chi-91 Lifting Inviscid 3D Sub Flat No Yes - No No 3D effects on

surface plate No Yes swept blades imp.
Butenko Inviscid 2D Sub Flat No Yes - No No
-89 3D Trans plate No Yes

Super
Saren-89 Unstalled 2D Incom Flat No Yes - No No

Stalled plate No Yes
Duan-89 Stalled 2D Incom Flat No Yes - No No

plate No Yes
Chen-89 Whitehead Inviscid 2D Incom Flat No Yes - Yes No Coupling blade/disk

-62 plate No Yes Mistuning
Jun-89 Whitehead Inviscid 2D Incom? Flat No Yes - Yes No Coupled modes

-62 plate No Yes Fin. elem. decrease stability
Fujimoto Singularity Stalled 2D Incom? Flat No Yes - Torsion Yes?? No Mistuning
-89 plate No Yes beneficial
Yamane Smith Inviscid 2D Sub Flat No Yes - Yes?? No Anisotropy of
-89 -72 plate No Yes composites
Schroeder Small Viscous 2D Incom Flat No Yes - Torsion Yes?? No Viscous effects
-89 perturbation plate No Yes decrease stability
Yang Actuator Stall 2D Sub? Flat No Yes - Yes?? No Non-constant
-89 disk plate No Yes interblade phase
Yang Actuator Stall Strip Sub? Flat No Yes - Yes?? No Inlet distortion
-89 disk theory plate No Yes increase stability
Sisto Vortex Stall 2D Incom Flat No Yes - Yes?? No Freq. entrainment
-89,-90 method plate No Yes Stall propagation
Abdel-Rahim otherwise indep.
-91  of blade freq.

Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Table 2.2: Continued (2 of 7)
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Application Special study
˝
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
                                                                                                                             phase                                          (k,-)                           vibrat.                                                      
Koller Asymptotic Inviscid 2D M_1 Flat pla. - No No Agreement with
-89 expansion +DCA Verdon-86
Chen Time-lin Inviscid 2D - No No Porous wall
-89 potential influence
LiuTime-lin Stall 2D M_1 Single - Yes No
-89 potential (Sisto-74) airfoil
Whithead Time-lin Inviscid 2D Sub Compr Yes Yes - Torsion No No Comparison with
-90 potential FE quasi-3D Trans Turbine Yes Yes Bending different results

Super Coupled (STCF 10)
Klose Whitehead Inviscid 2D Sub Compr Yes Yes - Torsion Yes No Mode coupling:
-89 -85 FE quasi-3D Trans Yes Yes Bending small titanium bl.,

Super Coupled large composite
Verdon-90 Time-lin Inviscid 2D Sub Compr Yes Yes - Torsion No No Overview of
-87b, -89b potential FD Trans Yes Yes Bending different resulty
Usab-90 Coupled (STCF 10)
Smith-91 Verdon-84 Inviscid 2D Sub Compr Yes Yes - Torsion Yes No Non-conservative

FD Trans Yes Yes Bending estimate if d/c, i,
Coupled camber neglected

Smith-90 Verdon-84 Inviscid 3D struct. Sub Compr Yes Yes - Torsion Yes No Friction dampers
FD Strip aero Trans Yes Yes Bending stabilizing

Coupled
Stecco-88 Time-lin Inviscid 2D Sub Turbine Low Yes - Torsion No No Comp. flat plate
-89a,b Potential Low Yes Bending +exp (Ezzat-89)
Yang-89 Time-lin Inviscid 3D Sub Turbine Yes Yes - Torsion No No Good agr. with

Potential FE Yes Yes Bending Namba-88 at low
load, bad at high

Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Table 2.2: Continued (3 of 7)
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Application Special study
˝
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
                                                                                                                             phase                                          (k,-)                           vibrat.                                                      
Hall-89 Time-lin Inviscid 2D Sub Comp Low Yes - Torsion No No Good agr. with

Euler FD Trans Nozzle Low Yes Atassi-78
Shock fitting

Allmares Non-linear Inviscid 2D Sub Nozzle - - - - No No Trends of self-
-87, -89 Euler Inv / Visc Trans - - exciting flow in

Upwind diffusor predicted
Bassi-89 Non-linear Inviscid 2D Trans Nozzle - - - - No No Non-linearities

Euler - - important in high-
TVD frequency flows

Bölcs-89c Non-linear Inviscid 2D Sub Nozzle - - - - No No Time-averaged
Euler Trans - - shock position

Upwind _ unsteady mean
Li-90 Non-linear Inviscid 2D Sub Compr Low No - Torsion No No Agreement with

Euler Trans No 180o analytical model at
Upwind d/c=2%, not at 5%

Yamamoto Non-linear Viscous 2D Sub Single Low No 1x106 None No No Self-exciting flow
-89 N-S Trans blade in No - in diffusor

nozzle
Wu-88 Non-linear Viscous 2D Sub Single Low No 2-9x106 Torsion No No Differences in

N-S (Baldwin- blade No - Reynold stresses
Lomax between the two
+k-ε) turbulence mod.

Carr-89 Non-linear Viscous 2D Sub Single Low No 0.6-4 Torsion 0-0.05 No No Dynamic stall
N-S blade No - x106

Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Table 2.2: Continued (4 of 7)
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Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
                                                                                                                             phase                                          (k,-)                           vibrat.                                                      
Krainer-88 Non-linear Viscous / 2D Incom Single Low No 1x106 Ramp-type No No

inviscid blade No - pitch
interact.

Jang-89 Non-linear Viscous / 2D Incom Single Low No 105-> Pitch No No Agreement at low
N-S inviscid blade No - 3•106 red.freq but

interact. differences at
high

Lee-91 Non-linear Inviscid 2D Incom Comp Low Yes - Pitch No No Agreement with
potential Single Low Yes exact analytical

blade model

Bakhle-89 Non-linear Inviscid 2D Sub Comp Low? Yes - Pitch? Yes No Agreement with
-90,-91 potential Low? Yes Smith-72
Ku-90 Non-linear Inviscid 3D Sub Propfan Low? Yes - Pitch No No Comparison with

potential Trans Low? 0o panel model and
exp. data

Kau-89 Non-linear Inviscid 2D Sub Compr Yes Yes - Bending No No Comparison with
Gallus-89 Euler Trans Turbine Yes Yes Torsion Smith-72 and

STCF4
Gerolymos Non-linear Inviscid 3D Super Compr Low Yes - Pitch No No Strip theory
-90a,b Euler Low Yes valid in super-
-88a,b,c sonic flow

(Comp. STCF7)
He-89 Non-linear Inviscid / 2D Sub Compr Yes Yes - Bending No No Viscous solution
-91a,b Euler viscous quasi 3D Trans Turbine Yes Yes Torsion different from invi-

interact. scid close to shock
(Comp. STCF4)

Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Table 2.2: Continued (5 of 7)
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Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
                                                                                                                             phase                                          (k,-)                           vibrat.                                                      
Huff-89a,b Non-linear Inviscid 2D Sub Compr Yes Yes - Bending No No Comparison with
-91 Euler + N-S Viscous Super Turbine Yes Yes Torsion Smith-72, Buffum

Upwind -87,-89 and
STCF1.

Nonlinearities
Reddy-91 Non-linear Inviscid 2D Sub Propfan Yes Yes - Bending No No Coupled aero-

Euler  Super Flat pl. Yes Yes Torsion and structures.
Upwind Compr Comp. STCF5

Carstens Non-linear Inviscid 2D Sub Turbine Yes Yes - Bending No No Comparison with
-91 Euler  Trans Yes Yes Torsion STCF4

Upwind

Arkadyev Non-linear Inviscid 2D? Sub? Turbine? Yes? Yes? - Bending? No No Tip section of
-89 Euler  Trans Yes? Yes? Torsion? fan stage

TVD

Giles Non-linear Inviscid / 2D Sub Compr Yes Yes - Bending No No Basic validations
-91 viscous  Trans Turbine Yes Yes Torsion (Smith-72 +

Upwind? interact  Stokes’ layer)

Kobaya- Non-linear Viscous 2D Trans Compr Yes No - Bending No No Basic validations
kawa-91 NS   Turbine Yes 0o Torsion (Smith-72 +

 Stokes’ layer)

Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Table 2.2: Continued (6 of 7)
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Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Sidén-91a Non-linear Viscous 2D Sub Compr Yes Yes Bending No No STCF5
-91b,c, -90 N-S (Baldwin- quasi 3D Trans Turbine Yes Yes Torsion Fan stage
-89a,b Lomax) Super Viscous effects

FE important
Bloemhof Influence - 3D - - Yes Frequency
-88 coefficients mistuning
Afolabi - - - Which blades
-88 to instrument

Application Special study
First author Type of Viscous / 2-D / 3-D Flow Type of Thickness Stagger Re Torsion/ Reduc. Structural  Nonrigid

model Inviscid  airfoil Camber Interbl.  (-) Bending freq. model blade
phase (k,-) vibrat.

Table 2.2: Theoretical unsteady  aerodynamic investigations on vibrating blades  1988-1991.
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Fujimoto et al [1989] use a singularity method to study
mistuning effects on fully stalled blades oscillating in
torsion. They conclude that the mistuning is beneficial
both for unstalled and for stalled flow and that
mistuning is more beneficial for turbines than for
compressors.

Yamane and Friedmann [1989] study aeroelastic
tailoring, with anisotropy of composites, of a structural
model coupled with strips of Smith’s [1972] linearized
flat plate theory. The sample case of a propfan blade
show that the natural frequencies of the blade can be
changed from 100% to 35% by changing the fiber
direction.

Schroeder and Fleeter [1989] have performed a
viscous small perturbation analysis of the
incompressible flow around a single flat plate
oscillating in torsion. Their preliminary results indicate
that viscous effects in general decrease the relative
stability of the airfoil.

A deforming actuator disk method is used by Yang et
al [1989] to predict stall flutter under non-constant
interblade phase angles. They indicate good
agreement with measured stall flutter limits in a
compressor.

The interaction of distortion on stall flutter limits is
studied computationally by Yang and Feng [1989].
They employ an actuator disk method and the strip
theory applied to an experimental sample case of stall
flutter in a single stage axial-flow compressor. The
authors state that the strip theory assumption is of
limited usefulness in predicting three-dimensional stall
flutter, and that an inlet distortion at the hub or tip can
increase the stability of the rotor.

Sisto et al [1989] present a numerical simulation for
propagating stall in a linear cascade of vibrating
blades using the vortex method in incompressible
flow. The method is first validated against unstalled
analytical data. The mean incidence was thereafter
increased. It was confirmed that the spectra of lift and
drag responses to the imposed blade motion contain
frequencies related to the oscillation frequency as well
as non-synchronous frequencies associated with the
inherent propagating stall frequency of the cascade. It
is shown that an entrainment of the stall and blade
vibration frequencies appears over an appreciable
interval of the blade frequency [Sisto et al, 1990].
Outside the entrainment region the stall propagation is
independent of the blade natural frequency. The
computational results show also that there is no
entrainment in the pure bending mode [Abdel-Rahim
et al, 1991].

Time-linearized studies, on profiles with thickness:  

Liu [1989] discusses a family of variational principles
for two-dimensional unsteady transonic flow. He
states that the theory can serve as a base for a finite
element analysis.

The two-dimensional flow (M_1) of a perfect gas is
analyzed with matched asymptotic expansions, for low
frequencies, by Koller and Kluwick [1989]. Results
presented for a flat plate cascade and a double
circular arc cascade agree satisfactorily with
numerical results by Verdon [1986].

Chen et al [1989] study the possibilities to passively
suppress blade flutter by using porous wall casings.
Their numerical studies, based on the linearized
potential flow equations, show that the porous walls
can have both a beneficial and a detrimental effect on
the flutter.

Liu et al [1989] present the initial stages of a small
perturbation potential flow model, in which they
consider completely separated flow with the Helmholtz
model by Perumal and Sisto [1974] for an isolated
plate airfoil extended to the case of a propeller. The
energy method is coupled to the aerodynamic
calculation to determine the aeroelastic stability.

Whitehead [1990] presents the complete theory,
together with some applications, of his linear unsteady
cascade finite element potential flow model, called
"FINSUP". Results are compared to, for
incompressible flow, a flat plate analysis [Smith, 1972]
and a singularity theory [Atassi and Akai, 1980], with
excellent agreements. At compressible Mach numbers
the agreement with NACA 0006 results by Verdon
[1989b] ("Standard Configuration 10") is generally
satisfactory, apart from in the regions of acoustic
resonances. In supersonic flow, major differences as
regards to Verdon’s "Cascade A" [Verdon and
McCune, 1975] are found for the unsteady blade
surface pressure coefficient (as the shocks are
smeared out by "FINSUP"), although the overall lift
and moment coefficients agree well. Comparison for a
normal shock configuration with the theory by
Goldstein et al [1977] does not agree very well, as
concluded earlier on "Standard Configuration 8" [Bölcs
and Fransson, 1986, pp. 171-175]. However,
Whitehead points out that configurations with  normal
shocks are very severe test cases.

Klose and Heinig [1989] combine Whitehead's
"FINSUP" program with an eigenvalue and an energy
method to solve the equations for the motion of the
blades and study the flutter characteristics of a typical
section of a two degree-of-freedom cascade with
different mass ratios. It is concluded that mode
coupling is small for a titanium wide chord fan blade
but relevant for some eigenmodes of a composite
(carbon-fiber-reinforced-plastic) propfan.
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Verdon [1987b; 1989b; 1990] reviews the theory
behind his linearized two-dimensional potential
cascade flow model and reports on the importance of
the unsteady, concentrated, load from an oscillating
shock wave in transonic flow. This unsteady load can
be well identified with the local pressure-displacement
function defined. He also gives an overview of results
(on NACA 0006 airfoils, see "Standard Configuration
10") computed with the model and points out
important changes of the local unsteady pressure and
the global aerodynamic damping for different
vibrations (torsional, chordwise and edgewise
bending) when such parameters as incidence, blade
shape, reduced frequency and Mach number are
systematically varied.

New mesh developments on the finite difference
unsteady potential flow solver by Verdon and Caspar
[1982, 1984] are reported by Usab and Verdon [1990].
They discuss higher resolutions in the leading edge
and shock regions with the new meshes and indicate
that the linearized unsteady solution is sensitive to the
numerical modeling of shock effects. It is concluded
that it is important to fit the shocks both in the steady-
state and unsteady solutions for an accurate capture
of the unsteady moments and forces on the blades.
Results are shown on "Standard Configuration 10".

The unsteady aerodynamic potential flow model by
Verdon and Caspar [1984], combined with a two
degree-of-freedom structural model to determine the
aeroelastic stability of a  two-dimensional subsonic
compressor cascade, is used by Smith and Kadambi
[1991]. Their results indicate that neglecting either the
airfoil thickness, camber or incidence can result in
non-conservative estimates of flutter behavior. Smith
[1990] shows also a quasi three-dimensional
aeroelastic model, in which a three-dimensional finite
element modal calculation is used with several strips
of the above mentioned two-dimensional aerodynamic
analysis. The model is applied to a high-energy
turbine blade and the author states that the second
mode (first edgewise bending) was found to be
unstable in the absence of mechanical damping. A
modal damping ratio of 1%, used to simulate the
blade-to-blade friction dampers, stabilized the blade
for all interblade phase angles.

Stecco and Marchi [1989, 1988] and Stecco et al
[1989] present a linear potential model for subsonic
flow conditions. The authors compare their results with
the analysis by Smith [1972] and by experimental data
by Ezzat et al [1989a,b]. Good trend wise agreement
is shown.

A three-dimensional small perturbation potential
subsonic flow finite element  model, with uniform
mean blade loading along the span is presented by
Yang et al [1989]. They indicate similar results as for a
double linearization theory [Namba and Toshimitsu,
1988] for small angles of attack, camber and blade

thickness, but considerable differences are found for
highly loaded cascades.

Hall and Crawley [1989], and Hall [1991], present two-
dimensional cascade calculations using a linearized
Euler model with explicit shock and wave fitting. The
method allows for blade loading, blade geometry,
shock motion and wave motion. It also accounts for
vorticity and entropy generation at the shocks. Results
presented show good agreement with an earlier semi-
analytical technique by Atassi and Akai [1978] for
cascades oscillating in torsion in low subsonic flow
and with a time-marching Euler solver [Giles, 1987] for
incoming vortical and entropic gusts. Transonic results
are presented for a nozzle flow with harmonically
oscillating inlet density. The authors conclude that
further work on the shock-fitting algorithm is
necessary for oblique shocks.

Non-linear (in time and space) models:  

In the last few years some fully non-linear methods for
calculating the unsteady flow through vibrating
cascades have appeared in the open literature. Some
of these treat, at the present stage, the nozzle flow
with emphasize on the sharp shock capture, and
some are based on usual shock capturing techniques
as employed for steady-state calculations.

Allmares and Giles present unsteady transonic flow
results, in a nozzle, with an upwind Euler model [1987]
and a coupled inviscid/viscous [1989] solver.
Experimental trends of the self-exciting flow  in a
diffuser are predicted, but some differences are
shown in the magnitude.

Bassi et al [1989] present a two-dimensional finite
volume "Total Variation Diminishing" method to
calculate the unsteady inviscid transonic flow through
nozzles. The authors conclude that their model
indicates that non-linearities can play an essential role
in some transonic high-frequency oscillating flows.
Similarly, Bölcs et al [1989c] present a fully non-linear
inviscid model for the calculation of large amplitude
shock fluctuations in a nozzle. The emphasize is put
on the sharp capture of the unsteady shock waves
("flux vector splitting") and results are presented for
one-dimensional and two-dimensional steady-state
and time-dependent flow, with the oscillations
introduced by a fluctuating back pressure. The model
is applied to normal and slightly oblique shock waves
and indicate good agreement with an analytical small
perturbation theory [Liou and Adamson, 1977]. The
results indicate that large shock oscillations can
appear for small changes in downstream pressure if
the area change in the nozzle is small, and that the
aerodynamic shock waves under some circumstances
can be pushed into the subsonic flow region.
Furthermore, the time-averaged position of the
unsteady shock is in principle not identical with its
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steady-state location. Results with a similar numerical
model, compared to the same small perturbation
analytical theory, but applied to the case of thin
unstaggered blades vibrating in out-of-phase pitch
motion in low transonic flow is presented by Li et al
[1990]. They indicate good agreement between the
numerical and analytical models for 2% thick blades at
low reduced frequency but some differences with
blades of 5% thickness. It is suggested that retaining
higher-order terms in the asymptotic theory should
improve the agreement. Preliminary calculations of
staggered blades suggests also the usefulness of the
numerical model for such cascades.

Yamamoto and Tanida [1989] complements their
measurements of self-excited flow oscillations on a
fixed airfoil with the development of a Navier-Stokes
solver for the flow around a single airfoil in a channel.
The simulated flow oscillation is similar to the
experiment, although it has larger amplitude, and the
oscillation frequency is well predicted.

Wu [1988] presents a fully non-linear two-dimensional
Navier-Stokes method, with k-ε and Baldwin-Lomax
turbulence models, for an oscillating airfoil with
application, among others, to the dynamic stall
phenomena. The author indicates qualitative
agreement between the two turbulence models and
experimental data for the aerodynamic loads, whereas
the Reynolds shear stress profiles show dramatic
differences between the two models.

A fully unsteady two-dimensional Reynolds-averaged
compressible Navier-Stokes model, written in the finite
difference form, is described by Carr et al [1989]. The
model shows good agreement with experimental lift
and pitching moment magnitudes once a prior
knowledge of the state of the flow turbulence is given
as an input. Krainer [1988] presents preliminary
results on a viscous-inviscid coupled model for a
ramp-type motion of an isolated airfoil in
incompressible flow. Both these projects are further
developed by Jang et al [1990] who show comparison
with steady-state and time-dependent experimental
data for a single airfoil at Reynolds numbers 105 and
3•106. The authors indicate a good agreement in the
unsteady velocity profiles between the two methods
for reduced frequencies up to k=0.015 at the higher
Reynolds number, but significant differences with
increasing reduced frequency.

A time-dependent incompressible potential flow
method to calculate the vortex shedding and blade-
vortex interaction for cascades, vibrating or multi-
blade-row, or single airfoils is described by Lee et al
[1991|. Good agreement with the exact solution of the
Theodorsen function is shown for the unsteady lift
coefficient.

Bakhle et al [1989, 1990] report on the development
of a fully non-linear potential flow solver for the

unsteady flow through vibrating two-dimensional
cascades, coupled with a two-degree-of-freedom
structural model. The model is validated against
unsteady flat plate analytical results at subsonic flow
[Smith, 1972] with trend wise agreement for the
sample cases shown. Calculations for the traveling
wave, single blade and indicial response excitation
modes are performed by Bakhle et al [1991]. As the
sample case blade vibration amplitude is small, the
problem is linear and all three methods give identical
results. The flat plate examples shown do not capture
the acoustic resonances and the agreement with the
theory by Smith [1972] is fair to good for the different
vibration modes, with the largest deviations in moment
coefficient due to plunging, for inlet Mach numbers
ranging from 0.2 to 0.8. The authors conclude that the
flutter reduced frequency is seen to increase with
Mach number, as well as with the airfoil thickness.

A fully time-dependent three-dimensional potential
flow solver, valid at zero degree interblade phase
angles, coupled with a linear structural model to
simulate the aeroelastic behavior of propfans is
presented by Ku and Williams [1990]. It is
demonstrated that, for subsonic flow, the results
obtained agree well with those of a panel method and
reasonably well with experimental data. For
supercritical flow the full potential flow solver predicts
better agreement with the data in the neighborhood of
the shock.

A non-linear Euler model in conservation law form is
presented by Kau and Gallus [1989] and Gallus and
Kau [1989]. Comparisons with the analytical flat plate
solution by Smith [1972] and experimental cascade
data on a compressor and turbine ("Standard
Configuration 4") are shown for subsonic flow
conditions. A frequency, Mach number and interblade
phase angle study is shown for the flat plate cascade.

Gerolymos [1990b, 1988a,b,c] presented a fully three-
dimensional non-linear unsteady inviscid numerical
model, for supersonic inlet flow, by the explicit
integration of the Euler equations in finite difference
form. Results are presented on a fan rotor in transonic
flow, with good steady-state agreement with data
measured in a rotating full-scale machine. Preliminary
results, for the cases investigated, indicate that the
strip theory assumption is valid for unsteady
supersonic flow. An implicit method by the same
author [Gerolymos, 1990a] reduce significantly the
required computing time for unsteady flow
calculations, while giving satisfactory agreement with
the explicit model although some parasite entropy
generation was noticed with the implicit scheme.

Results from the above mentioned explicit model (for
supersonic inlet flow) was compared with two-
dimensional analytical predictions and two sets of
experimental data by Gerolymos et al [1990b],
together with an evaluation of differences between
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reflecting and non-reflecting boundary conditions. The
use of a non-reflecting (in a one-dimensional flow) and
a capacity condition gave almost similar results as
regards to the unsteady moment coefficient of a
vibrating flat plate cascade for all interblade phase
angles. These results compared also very well with
analytical results from Adamczyk and Goldstein [1978]
in the subresonant region of interblade phase angles.
However, in the region were the unsteady waves
decay (i.e. superresonant domain for supersonic
flows) some differences between the analysis and the
computation could be found. The author points out
that this corresponds to previous subsonic (numerical)
results by Fransson and Pandolfi [1986], who also
found less good agreement in regions of attenuating
waves. No evidence of acoustic resonances could
however be found with the numerical model. A fairly
good agreement can be found for two sets of
experimental data ("Standard Configuration 7" and an
ONERA cascade), and the author states that the
discrepancies found may appear because of viscous
effects and, secondary, non-rigid blade oscillations.

Several investigations using the concept of "single
blade excitation" towards "traveling wave mode"
[Hanamura et al, 1980; Crawley, 1984] have appeared
also among theoretical studies. Numerical Euler
calculations by Gerolymos [1988a] indicate that the
superposition principle of influence coefficients gives
results identical to the full rotor vibrating in the
traveling wave mode if 3-4 blades are considered on
each side of the reference blade.

Another time-marching Euler model for two-
dimensional and quasi three-dimensional flow is
shown by He [1989]. This method is based on a finite
volume scheme with a two-step Runge-Kutta
integration in time. Results show good agreement with
linearized flat plate models and with high subsonic
turbine experimental data ("Standard Configuration
4"). Furthermore, strong nonlinear behavior of the
shock movement is shown for an oscillating biconvex
cascade under transonic flow conditions. This inviscid
quasi three-dimensional model has been coupled with
an integral boundary layer solution by He and Denton
[1991b] to obtain solutions on vibrating cascaded
blades. Steady laminar and turbulent correlations are
adopted in a quasi-steady way for the time-dependent
solution. Presented results show good agreement with
experimental unsteady (fixed wall) turbulent boundary
layer data. The model has been applied to calculate
the unsteady flow around an isolated airfoil, a
transonic duct flow,  a bi-convex cascade and a fan tip
section [He and Denton, 1991c]. The authors
conclude that the viscous and inviscid numerical
solutions are quit different in the neighborhood of a
shock wave. An experimentally determined phase shift
in a leading edge separation bubble could also be
predicted with the viscous model.

A fully non-linear finite difference numerical analysis,
based on the Euler and full Navier-Stokes equations,
for unsteady inviscid and viscous two-dimensional
supersonic [Huff and Reddy, 1989] and subsonic
[Huff, 1989] flow through vibrating cascades is
developed at NASA Lewis Research Center. The
authors indicate good agreement, for the inviscid
version of the code, in the moment coefficients with
supersonic axial flow flat plate results by Ramsey and
Kielb [1987], as well as good trend wise agreement for
the unsteady pressure difference coefficient. They
conclude that blade thickness, for the sample case
computed, has a large positive influence on the
stability of the cascade. This has to be compared to
the above results by Ramsey [1989] who indicate
positive or negative effects on the stability in
dependence of cascade geometry and flow conditions.

The viscous version of the code was run against two
sets of experimental data in the low ("Standard
Configuration 1") and high (biconvex airfoils by Shaw
et al [1985], Buffum et al [1987]) subsonic flow
domains, and against a flat plate analysis [Smith,
1972]. The agreement, at low subsonic flow, is good
for the two aeroelastic sample cases showed5. The
flat plate calculations show good agreement at non-
zero interblade phase angles but major discrepancies
close to the acoustic resonance. In such a case
calculations with reflective and non-reflective inlet and
outlet boundary conditions give major differences
between the numerical and analytical results
(compare results by Gerolymos and
Fransson/Pandolfi above). Finally, the predictions for
the biconvex airfoil is in fair agreement with the data.

A flux-difference inviscid version of the model, based
on an H-grid, has been presented by Huff et al [1991].
The authors indicate a good agreement with the flat
plate theory by Smith [1972], except for certain cases
in the super-resonant flowfield (see above), and trend
wise agreement with experimental data by Buffum and
Fleeter [1989a,b]. From a study concerning the
nonlinear behavior in an oscillating cascade, by
varying the vibration amplitude, they conclude that the
responses may become nonlinear for amplitudes
greater than one degree. Nonlinearities are more
dominant near the shocks. Reddy et al [1991] present
a coupling of this unsteady aerodynamic model with a
structural model and compare with similar test cases
as above. Furthermore, they present a flutter
calculation on a propfan as an application, in which a
good agreement with a full potential solver by Bakhle
et al [1990] is shown.

Carstens [1991a] show an inviscid nonlinear transonic
flow solver, based on the flux vector splitting
technique. Results are presented for the "Fourth
Standard Configuration". Excellent agreement is

                                                
5 This corresponds to conclusions by other researchers [Bölcs and

Fransson, 1986, pp. 57-80].
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demonstrated for subsonic outlet flow conditions,
whereas the measured unsteady influence of the
shock waves is not predicted by the theory, neither in
amplitude nor in phase.

Inviscid computations with a "Total Variation
Diminishing" two-dimensional model is presented by
Arkadyev et al [1989]. They show results in the
transonic flow region on a tip section of a fan stage.

Giles and Haimes [1991] present unsteady validations
of the hybrid numerical viscous/inviscid model
"UNSFLO" against flat plate theories, both for wake
interactions, nozzle flow and oscillating blades. A very
good correlation against results from "LINSUB"
[Smith, 1972] is shown for the inviscid model. The
unsteady component of the vorticity in the viscous
model is validated against the "Stokes’ layer" with
excellent agreement.

A Navier-Stokes model, based on the Baldwin-Lomax
turbulence model, for unsteady viscous transonic flow
is shown by Kobayakawa and Ogushi [1989]. The
model is applied towards a two-dimensional
unstaggered NACA0012 cascade oscillating at 0o

interblade phase angle.

Sidén et al [1989a,b, 1990, 1991a,b,c] present a
model for the solution of two-dimensional and quasi
three-dimensional viscous flow through cascades with
vibrating blades. They employ the Baldwin-Lomax
turbulence model to close the equations and
implement the model on a finite element non-
structured mesh in the outer, non-moving, region and
a structured moving mesh attached to the airfoils.
Results are presented on some test cases (among
others on "Standard Configuration 5") and a flutter
prediction on a fan is performed [Sidén and Albråten,
1991b]. The authors conclude that viscous effects are
important in the leading edge region of the fifth
standard configuration, but that their viscous model
gives a fairly large over-prediction in this region, at
least for moderate inlet flow angles.

2.3: Conclusions

Significant progress has been made towards
prediction of unsteady flow phenomena through
vibrating blade rows during the period 1987-1991. In
many cases numerical possibilities have advanced so
that new detailed experimental results are urgently
needed as validation of, for example, viscous flow
models. More details about this is given in the main
conclusions in section 4 below.
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3. STANDARD CONFIGURATIONS

3.0      General.  

3.0.1        Previous standard configurations.

The collection of two-dimensional standard  
configurations, for attached flow, compiled by Bölcs  
and Fransson [1986] consisted of 9 different cascade-
geometries, with the objective to validate both
experimental data and prediction models. To this end,
two different sets of data were put forward for each
class of test cases. During the project it was
established that most of the data selected for purely
subsonic flow gave a reasonable agreement with
some prediction models, which validated both the
experiments and the theories. The largest
computational efforts thus went into standard
configurations 1 (low subsonic flow compressor
cascade), 4 (cambered transonic turbine cascade), 8
(flat plate) and 9 (double circular arc profiles with low
camber), with some additional work put into
configurations 5 (high subsonic compressor profile)
and 7 (supersonic compressor). It was concluded from
the project that certain geometries and flow conditions
could be accurately predicted, whereas discrepancies
existed for other sample cases.

Some inconsistency has been found in the definition
of the pressure coefficients (steady-state and time-
dependent). These are, in the present work, defined
with the compressible dynamic pressure, (pw1-p1), as
non-dimensionalized value. However, some
researchers have used the incompressible value,
(ρ-_v-_2/2), instead. It has been tried to, as accurately
as possibly, mention these inconsistencies in the text
for the various standard configurations, but it is
important to keep this eventual difference in mind for
some comparisons.

3.0.2       Modifications of standard configurations

As the predictions on the configurations 2, 3 and 6
(see Bölcs and Fransson [1986]) were considerably
smaller than on other cascade configurations, it is
proposed that efforts for comparisons with low
subsonic compressor blades and cambered transonic
turbine blades should be reduced to configurations 1
and 4 (Figs. 3.1.1 and 3.4.1). Configuration 5 (Fig.
3.5.1) is today of larger interest than in the beginning
of the project because of its systematic parameter-
study from attached to stalled flow, although data are
only available for one blade vibrating (here the
question of superposition of influence coefficients in
stalled flow may arise). Configuration 7, which treats
supersonic inlet flow conditions for a compressor (Fig.
3.7.1), is also of present interest, especially as some
major discrepancies between the data and the
predictions exist. It is probable that some of these can

be explained by viscous effects and by short comings
in the numerical methods but that some can certainly
also be found in the data. However, as no other
complete data base has been found for supersonic
flows to date, this configuration should be kept
presently.

Flat plate cascades, double circular arc profiles and
other analytically defined geometries are still today of
large interest and are necessary in order to compare
prediction models with each other and to draw
physical conclusions from the results. Furthermore,
modern compressor blades in the high subsonic and
supersonic flow domains are often derivatives of such
profiles, and there seems to be a renewed interest in
cascades with supersonic leading edge locus. The flat
plate and double circular arc geometries
(configurations 8 and 9)  are thus kept in a redefined
way (Figs. 3.8.1 and 3.9.1). Finally, a supplementary
configuration is proposed, based on a modified NACA
four digit series airfoil (Fig. 3.10.1)6.

It is important to note that the configurations are
presently still limited to two-dimensional flow
conditions, with mostly attached flow. Although
numerical results today are available for solving the
Navier-Stokes equations with different (steady-state)
turbulence model assumptions there are hardly no
separated experimental cascade data available (see
however the extension of "Standard Configuration 5"
below). Furthermore, three-dimensional unsteady
cascade effects are today not taken into full account
experimentally. However, it is reasonable to expect
that some data for separated and three-dimensional
flow will appear in the not too distant future. These will
then, if possible, be incorporated in the present data
base. All present sample cases are, furthermore,
considered to be of uncoupled modes, although the
coupling effects are of large importance for the
stability of the blading. It is presently assumed that the
coupled modes are obtained by superimposing the
heaving and pitching motions.

The number of aeroelastic sample cases in the report
are still out of necessity large. This can not be
otherwise as the standard configurations should cover
all velocity domains from low subsonic to supersonic
velocities and both compressor and turbine
geometries, and as the interblade phase angle is a
parameter of major importance in turbomachine
applications. Furthermore, it is well known that the
overall time-dependent blade lift and moment

                                                
6 Please note, however, tthat all he original information and experimental

results for the other standard configurations still exist in the workshop
data-base.



Standard Configurations-1992 / T. H. Fransson and J. M. Verdon / 6/21/01 28

coefficients may give reasonable agreement between
different prediction models and with experimental
data, although the unsteady blade surface pressure
coefficient results may represent quite different trends
and to a certain extent may indicate different physical
interpretations. It is thus today even more important
than at the outset of the workshop to represent, for
different interblade phase angles and for different
cascade and flow configurations, the pressure and
suction surface time-dependent pressure coefficients
separately.

For the benefit of those who may eventually be
interested in comparing different results not included

in the appendices, some publications treating results
on the different standard configurations are given in
each section below.

Please also note that all airfoil coordinates as well as
experimental data and numerical results  presented,
either in the first [Bölcs and Fransson, 1986] or the
present standard configuration report, exist on
computer files and can be obtained upon request. The
plots of all the data obtained from different
researchers are given in Appendix A4, and the
corresponding data are listed in Appendix A3.

3.1      First standard configuration (compressor cascade in low subsonic flow).  

The first standard configuration, included by the
courtesy of Dr. Frank Carta at the United
Technologies Research Center [Carta 1982a,b; 1984],
and its 15 recommended aeroelastic sample cases,
gives an overview of different steady-state and time-

dependent flow conditions at low Mach numbers (see
Fig. 3.1.1, Tables 3.1.1-2). Most prediction models
give good agreement with the data, but some minor
differences between the different models became
apparent.

Maximum thickness at x=0.5 Vibration in pitch around (xα,yα)=(0.5,0.0115) Thickness / chord = 0.06
span=0.254 m c=0.1524m τ=0.75
γ=55o camber=10o i=variable (2o, 6o)
Working fluid: Air α = 0.5o, 2o (=0.0087, 0.0349 rad) k=variable

Fig. 3.1.1: First standard configuration: Cascade geometry [Bölcs and Fransson, 1986, p. 58]
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All results (experimental as well as predictions)
presented on this standard configuration have been
(as the flow velocity is very low) non-dimensionalized
with the incompressible dynamic pressure,
(ρ-_•v-_2/2).

The most important conclusion from this standard
configuration is that the detailed blade surface
pressures, and thus the flutter limits, can be fairly
accurately predicted for low incidence flows on this
type of cascades. The reader is referred to section 7.1

in the original report on the standard configurations
[Bölcs and Fransson, 1986] for details.

It is however of importance to note that although the
results obtained are positive, the agreement between
the data and the predictions, or between the different
predictions, is not as good as would be wished from a
theoretical point of view. It should especially be
mentioned that, in several cases, a flat plate model
gives as good agreement, or better, with the data as
some prediction models that consider the blade
thickness.

Point Suction surface Pressure surface
No. x/c y/c x/c y/c
1 0.0008 0.0020 0.0012 -0.0019
2 0.0046 0.0053 0.0054 -0.0042
3 0.0070 0.0064 0.0080 -0.0050
4 0.0120 0.0083 0.0130 -0.0061
5 0.0244 0.0116 0.0256 -0.0077
6 0.0494 0.0164 0.0507 -0.0098
7 0.0743 0.0204 0.0757 -0.0115
8 0.0993 0.0237 0.1007 -0.0129
9 0.1494 0.0290 0.1506 -0.0150
10 0.1994 0.0331 0.2006 -0.0165
11 0.2495 0.0364 0.2505 -0.0177
12 0.2996 0.0387 0.3004 -0.0185
13 0.3998 0.0411 0.4002 -0.0188
14 0.5000 0.0406 0.5000 -0.0176
15 0.6002 0.0370 0.5998 -0.0146
16 0.7003 0.0306 0.6997 -0.0104
17 0.8003 0.0223 0.7997 -0.0069
18 0.8503 0.0176 0.8497 -0.0053
19 0.9003 0.0127 0.8997 -0.0040
20 0.9502 0.0078 0.9497 -0.0032
21 0.9975 0.0030 0.9973 -0.0025
Chord: c=0.1524 m (=6 inches)
L.E. radius/c=0.0024; L.E. radius center at x/c=0.0024, y/c=0.0002
T.E. radius/c=0.0028; T.E. radius center at x/c=0.9972, y/c=0.0003
Table 3.1.1: First standard configuration: Dimensionless airfoil coordinates [Bölcs and
Fransson, 1986, p. 59]

Time averaged Time dependent parameters
Aeroelastic M1 i p1/pw1 p1/pw1 β1 k α σ f
test case (-) (o) (-) (-) (o) (o) (-) (o) (Hz)
1 0.18 2 0.9774 0.9818 -62.0 0.122 0.5 -45 15.5
2 " " " " " " " +45 "
3 0.17 6 0.9790 0.9852 -62.5 0.122 0.5 -45 15.5
4 " " " " " " 2.0 +45 "
5 " " " " " " " -45 "
6 " " " " " " " 180 "
7 " " " " " " " -135 "
8 " " " " " " " -90 "
9 " " " " " " " 0 "
10 " " " " " " " +90 "
11 " " " " " " " +135 "
12 " " " " " 0.072 " -90 9.2
13 " " " " " 0.151 " " 19.2
14 " " " " " 0.301 " " 38.4
15 " " " " " 0.603 " " 76.8
Table 3.1.2: First standard configuration: Experimental values for 15 recommended aeroelastic sample cases [Bölcs and
Fransson, 1986, p. 60]
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The aeroelastic sample cases originally defined have
proven their value and are thus presently kept in the
data-base. It is however important to point out that
some uncertainties as regards to the exact value of
the inlet flow angle still exist. It has been found by
different researchers that a better agreement with the
steady-state blade surface pressure distribution is
obtained if the inlet flow angle is modified about 2o

[Bölcs and Fransson, 1986, p. 61], or if a stream-tube
variation is introduced.

Results on this standard configuration have been
presented by Chiang and Fleeter [1989b] and Huff
[1989]. These authors have, as other researchers,
found a good agreement with the experimental data.

3.2      Second standard configuration  

No modifications have been made to this standard
configuration. All results, and a discussion thereof, are
found in the 1986 report [Bölcs and Fransson, 1986].
A listing of all the results are found in appendix A3.

As with the first standard configuration, the
incompressible dynamic pressure is employed as a
non-dimensionalized value for the pressure
coefficients.

3.3      Third standard configuration  

No modifications have been made to this standard
configuration. All results, and a discussion thereof, are
found in the 1986 report [Bölcs and Fransson, 1986].
A listing of all the results are found in appendix A3.

The compressible dynamic pressure, (pw1-p1), is
employed as non-dimensionalized value for the
pressure coefficients.

3.4      Fourth standard configuration (cambered turbine cascade in transonic flow).  

The fourth standard configuration, with results
obtained at the Swiss Federal Institute of Technology
[Bölcs et al, 1985], is shown in Fig. 3.4.1, with the
profile coordinates and aeroelastic sample cases
given in Tables 3.4.1-2. Please note that the blade
coordinates are given with more significant decimals
than earlier as it was pointed out that the coordinates
showed some oscillatory behavior. The Reynolds
number was not given earlier and are included now as
a basis for viscous calculations. Furthermore,
experimental data exist for many more steady-state
and time-dependent operating conditions (see for
example Schläfli [1989]). These can be obtained upon
request.

It is important to point out that the time-averaged
dynamic pressure ( p  w 1  -  p  1 ) is used as the quantity
with which the pressure coefficients are made
dimensionless. This should be remembered when
predictions are performed. As far as the present
authors are aware of all predictions have also been
presented with this dynamic pressure.

The results obtained so far show a good general
agreement between the data and prediction models
for shock-free flows, both as regards to the time-
dependent blade surface pressures as the unsteady
forces. At transonic and supersonic outlet flow
conditions major discrepancies are found, as
presented by Bölcs and Fransson [1986]. It should
however be pointed out that a re-evaluation of the
original data has indicated that the experimental

uncertainty for the inlet flow angle may be larger than
originally thought, which may explain some
differences in the experimental and computed steady-
state pressure distributions, especially in the leading
edge region. Most authors have thus introduced a
stream-tube contraction (towards 10%) into the
calculations in order to compensate for leakage flow
and boundary layer growth in the test facility. A better
agreement with the steady-state blade surface
pressure distributions is then generally obtained.

The reader is referred to section 7.4 in Bölcs and
Fransson [1986] for more details about the cascade
geometry and previous results.

Since the first results presented [Bölcs and Fransson,
1986], further predictions have been performed on the
cascade by Whitehead [1987], Servaty et al [1987],
Gallus an Kau [1989], Kau and Gallus [1989], He
[1989] and Carstens [1991a] with the general results
that the predictions and experiments agree well, both
for steady-state and time-dependent flow, for subsonic
flow conditions whereas the predictions do not give
results similar to the experiment in the neighborhood
of the shock waves. It can probably be concluded that
the experiments are good, but some aspects of the
data can not be explained with present prediction
models. Further numerical developments and
experiments in transonic flow seem thus necessary for
the future.
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It has been pointed out [Carstens, 1991a] that the
position of the time-averaged shock wave at the
supersonic outlet flow velocity cases can be quite

accurately predicted if a sufficiently fine mesh
structure is used. The predicted shock strength did
however not correspond to the measured one.

Time averaged Time dependent parameters
Aeroelastic M1 β1 Re1 M2,is β2 σ k h(0) δ
test case            (-)        (o)            (-)               (-)          (o)           (o)           (o)          (-)            (o)     
1 0.19 -45 5.6x105 0.58 -71 -90 0.168 0.0038 60
2 0.26 " 6.6x105 0.76 " " 0.128 " "
3 0.28 " 8.2x105 0.90 " " 0.107 " "
4 0.29 " 8.5x105 1.02 " " 0.095 0.0033 "
5 " " " 1.19 " " 0.082 0.0038 "
6 0.28 " 8.2x105 0.90 " 180 0.107 0.0033 "
7 " " " " " +90 " " "
8 " " " " " 0 " " "
Table 3.4.2: Fourth standard configuration: Experimental values for 8 recommended aeroelastic sample
cases [Bölcs and Fransson, 1986, p. 103]

Span = 0.040m Hub / tip = 0.8 c = 0.0744 τ = 0.67  (hub)
d = 0.17 Camber = 45o γ = 56.6o 0.76 (midspan)
Re = 5.1 - 8.5 x 105 M2is = variable Working fluid: Air 0.84 (tip)
Vibration direction: First bending mode δ = 60.4o

f = variable k = variable σ = variable
Nominal flow conditions: M1=0.31; β1=-44.1o; M2=0.90; β2=-72.4o

Fig. 3.4.1: Fourth standard configuration: Cascade geometry [Bölcs and Fransson, 1986, pp. 99-100].
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Point x/c y/c Point x/c y/c Point x/c y/c
1 1e+0 -7.163157e-3 2 9.898891e-1 -1.062851e-2 3 9.797677e-1 -1.407275e-2
4 9.696463e-1 -1.748528e-2 5 9.595144e-1 -2.088725e-2 6 9.493719e-1 -2.426810e-2
7 9.392188e-1 -2.762781e-2 8 9.290657e-1 -3.096639e-2 9 9.189020e-1 -3.427327e-2
10 9.087384e-1 -3.756959e-2 11 8.985641e-1 -4.084478e-2 12 8.883794e-1 -4.409884e-2
13 8.781946e-1 -4.732121e-2 14 8.679992e-1 -5.053301e-2 15 8.577933e-1 -5.372367e-2
16 8.475874e-1 -5.688265e-2 17 8.373709e-1 -6.003106e-2 18 8.271439e-1 -6.315833e-2
19 8.169168e-1 -6.625392e-2 20 8.066792e-1 -6.933893e-2 21 7.964416e-1 -7.240282e-2
22 7.861934e-1 -7.543501e-2 23 7.759453e-1 -7.845664e-2 24 7.656865e-1 -8.145714e-2
25 7.554172e-1 -8.442594e-2 26 7.451479e-1 -8.738417e-2 27 7.348680e-1 -9.031072e-2
28 7.245776e-1 -9.322669e-2 29 7.142872e-1 -9.611097e-2 30 7.039967e-1 -9.898469e-2
31 6.936852e-1 -1.018267e-1 32 6.833842e-1 -1.046476e-1 33 6.730620e-1 -1.074579e-1
34 6.627505e-1 -1.102365e-1 35 6.524178e-1 -1.129940e-1 36 6.420851e-1 -1.157409e-1
37 6.317524e-1 -1.184562e-1 38 6.214091e-1 -1.211503e-1 39 6.110553e-1 -1.238233e-1
40 6.007015e-1 -1.264857e-1 41 5.903476e-1 -1.291164e-1 42 5.799833e-1 -1.317260e-1
43 5.696083e-1 -1.343144e-1 44 5.592333e-1 -1.368818e-1 45 5.488584e-1 -1.394280e-1
46 5.384729e-1 -1.419530e-1 47 5.280768e-1 -1.444570e-1 48 5.176807e-1 -1.469398e-1
49 5.072740e-1 -1.493803e-1 50 4.968568e-1 -1.517997e-1 51 4.864396e-1 -1.541769e-1
52 4.760118e-1 -1.565223e-1 53 4.655735e-1 -1.588255e-1 54 4.551246e-1 -1.610865e-1
55 4.446651e-1 -1.632946e-1 56 4.342056e-1 -1.654393e-1 57 4.237144e-1 -1.675418e-1
58 4.132233e-1 -1.695703e-1 59 4.027215e-1 -1.715354e-1 60 3.921987e-1 -1.734265e-1
61 3.816652e-1 -1.752437e-1 62 3.711107e-1 -1.769553e-1 63 3.605455e-1 -1.785718e-1
64 3.499698e-1 -1.800826e-1 65 3.393730e-1 -1.814666e-1 66 3.287551e-1 -1.827344e-1
67 3.181265e-1 -1.838543e-1 68 3.074769e-1 -1.848157e-1 69 2.968272e-1 -1.855976e-1
70 2.861459e-1 -1.861892e-1 71 2.754646e-1 -1.865590e-1 72 2.647832e-1 -1.866858e-1
73 2.540913e-1 -1.865484e-1 74 2.434100e-1 -1.861470e-1 75 2.327497e-1 -1.854497e-1
76 2.221107e-1 -1.844143e-1 77 2.115138e-1 -1.830302e-1 78 2.009698e-1 -1.812870e-1
79 1.904892e-1 -1.791634e-1 80 1.801037e-1 -1.766489e-1 81 1.698238e-1 -1.737118e-1
82 1.596813e-1 -1.703627e-1 83 1.496761e-1 -1.666015e-1 84 1.398189e-1 -1.624705e-1
85 1.301095e-1 -1.579803e-1 86 1.205692e-1 -1.531626e-1 87 1.112085e-1 -1.480174e-1
88 1.020274e-1 -1.425447e-1 89 9.305765e-2 -1.367338e-1 90 8.429916e-2 -1.306061e-1
91 7.578366e-2 -1.241508e-1 92 6.751117e-2 -1.173680e-1 93 5.953450e-2 -1.102576e-1
94 5.188534e-2 -1.027987e-1 95 4.459540e-2 -9.499107e-2 96 3.769637e-2 -8.682422e-2
97 3.120939e-2 -7.832986e-2 98 2.516613e-2 -6.951854e-2 99 1.959831e-2 -6.039027e-2
100 1.453761e-2 -5.097674e-2 101 1.005800e-2 -4.127795e-2 102 6.201730e-3 -3.130447e-2
103 3.085017e-3 -2.108799e-2 104 8.452102e-4 -1.063908e-2 105 0e+0 0e+0
106 2.842019e-3 1.017421e-2 107 1.037495e-2 1.759093e-2 108 2.052804e-2 2.071821e-2
109 3.116712e-2 2.169020e-2 110 4.184847e-2 2.172190e-2 111 5.252982e-2 2.118308e-2
112 6.317946e-2 2.032730e-2 113 7.380798e-2 1.918627e-2 114 8.440481e-2 1.778111e-2
115 9.496994e-2 1.615408e-2 116 1.055033e-1 1.434744e-2 117 1.160156e-1 1.242459e-2
118 1.265174e-1 1.040665e-2 119 1.369980e-1 8.304191e-3 120 1.474575e-1 6.117209e-3
121 1.578958e-1 3.845706e-3 122 1.683341e-1 1.500248e-3 123 1.787514e-1 -8.769056e-4
124 1.891686e-1 -3.285755e-3 125 1.995752e-1 -5.705169e-3 126 2.099819e-1 -8.135149e-3
127 2.203885e-1 -1.056512e-2 128 2.308058e-1 -1.299510e-2 129 2.412124e-1 -1.542508e-2
130 2.516296e-1 -1.782337e-2 131 2.620468e-1 -2.020052e-2 132 2.724746e-1 -2.254598e-2
133 2.829130e-1 -2.484918e-2 134 2.933619e-1 -2.712068e-2 135 3.038214e-1 -2.932879e-2
136 3.142914e-1 -3.148408e-2 137 3.247720e-1 -3.357597e-2 138 3.352632e-1 -3.559391e-2
139 3.457755e-1 -3.752733e-2 140 3.563089e-1 -3.938679e-2 141 3.668423e-1 -4.115117e-2
142 3.774075e-1 -4.282046e-2 143 3.879726e-1 -4.439467e-2 144 3.985589e-1 -4.586322e-2
145 4.091663e-1 -4.723669e-2 146 4.197736e-1 -4.849394e-2 147 4.304022e-1 -4.964553e-2
148 4.410412e-1 -5.069148e-2 149 4.516909e-1 -5.163178e-2 150 4.623511e-1 -5.245586e-2
151 4.730113e-1 -5.318485e-2 152 4.836821e-1 -5.380820e-2 153 4.943529e-1 -5.431532e-2
154 5.050342e-1 -5.473793e-2 155 5.157261e-1 -5.504432e-2 156 5.264075e-1 -5.526618e-2
157 5.370994e-1 -5.539296e-2 158 5.477807e-1 -5.542466e-2 159 5.584727e-1 -5.537183e-2
160 5.691646e-1 -5.523449e-2 161 5.798459e-1 -5.501262e-2 162 5.905378e-1 -5.470623e-2
163 6.012192e-1 -5.431532e-2 164 6.118899e-1 -5.383989e-2 165 6.225713e-1 -5.327994e-2
166 6.332315e-1 -5.263547e-2 167 6.439023e-1 -5.190647e-2 168 6.545625e-1 -5.110352e-2
169 6.652122e-1 -5.021605e-2 170 6.758512e-1 -4.925463e-2 171 6.864903e-1 -4.821924e-2
172 6.971294e-1 -4.709934e-2 173 7.077474e-1 -4.591604e-2 174 7.183653e-1 -4.465879e-2
175 7.289727e-1 -4.332759e-2 176 7.395695e-1 -4.194356e-2 177 7.501558e-1 -4.048557e-2
178 7.607315e-1 -3.896419e-2 179 7.713072e-1 -3.740055e-2 180 7.818723e-1 -3.577352e-2
181 7.924269e-1 -3.409367e-2 182 8.029709e-1 -3.236098e-2 183 8.135149e-1 -3.057548e-2
184 8.240483e-1 -2.874771e-2 185 8.345712e-1 -2.686712e-2 186 8.450835e-1 -2.494426e-2
187 8.555852e-1 -2.297915e-2 188 8.660869e-1 -2.097178e-2 189 8.765781e-1 -1.893271e-2
190 8.870587e-1 -1.685138e-2 191 8.975393e-1 -1.472778e-2 192 9.080094e-1 -1.257250e-2
193 9.184689e-1 -1.038552e-2 194 9.289283e-1 -8.177409e-3 195 9.393772e-1 -5.927037e-3
196 9.498262e-1 -3.655534e-3 197 9.602645e-1 -1.373466e-3 198 9.707028e-1 9.402964e-4
199 9.811306e-1 3.264624e-3 200 9.915690e-1 5.599518e-3 201 9.961120e-1 6.624335e-3

Table 3.4.1: Fourth standard configuration: Dimensionless airfoil coordinates [Bölcs and Fransson, 1986, p. 101]
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While the new profile definition (which corresponds to
the one after which the experimental profiles where
originally manufactured) is more detailed than the one
originally given, it has been found that also the new
coordinates show some oscillatory behavior when a
very fine mesh is used [Hoyniak, 1991; Carstens,
1991b]. This can give some spurious steady-state and
unsteady results, and can be avoided by performing a
smoothing of the coordinates [Carstens, 1991b].

Another problem that was discussed is the treatment
of the blunt trailing edge. Most prediction models use

a modified airfoil shape towards the trailing edge in
order to close in towards a sharp edge.

It can generally be stated that the turbine geometry
defined, with its corresponding 8 aeroelastic sample
cases, is still of importance for the understanding of
flutter-phenomena and further developments of
numerical prediction models. The original cases are
thus kept in the data-base. Much more work has to be
done to find explanations for the differences between
the data and the predictions.

3.5      Fifth standard configuration (compressor cascade in high subsonic flow).  

Results on the fifth standard configuration (Fig. 3.5.1,
Tables 3.5.1-2) are included by the courtesy of Dr. E.
Széchényi at the "Office Nationale d'Etudes et de
Recherche Aerospatiale" (ONERA) [Széchényi, 1984;
Széchényi et at, 1981a,b]. The original experiments
treated a large domain of incidence angles, ranging
from attached to stalled flow conditions. In the 1986
report on the standard configurations only the small

incidence angles (i_6o) cases were included, as at
that time no models for prediction of the stalled cases
were proposed. In the meantime a few viscous solvers
have become available, and some researchers have
asked for more information on the partially and fully
stalled flow conditions. An updating of the aeroelastic
sample cases of the fifth standard configuration is thus
of interest. These updated cases are given in Table

Working fluid: Air
Maximum blade thickness at x=0.67
d = 0.027 c = 0.090 m span = 0.120 m
τ = 0.95 camber = 0o γ = 59.3o

i = 2o->12o M1 = 0.5->1.0 α = 0.00524 rad
σ: Only one blade vibrated f = 75->550 Hz k = 0.14->1.01

Fig. 3.5.1: Fifth  standard configuration: Cascade geometry [Bölcs and Fransson, 1986, p. 124].
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3.5.2, and the experimental data are shown (in listings
and plots) in appendices A3 and A4 (for previous
experimental results, see also section 7.5 and
appendix A5 in Bölcs and Fransson [1986]). In
evaluating these data it should be kept in mind that
the experimental results are obtained with only one
blade vibrating. The data presented do thus not
correspond to the time-dependent pressure coefficient
in the traveling wave mode as for the other standard
configurations, but instead to the eigen-influence of
the reference blade on itself when all the other blades
in the cascade are fixed.

Some researchers have pointed out that the original
blade coordinates seem to have some "wiggles" in
them when blown up for the numerical calculations.
Unfortunately, it is presently not possible to give the
profile definition with a better resolution. As with the
fourth standard configuration, a smoothing of the data
is necessary.

The question as how the pressure coefficients have
been non-dimensionalized has been brought up. It has
been pointed out that a better agreement between the
data and one prediction model was found if the data
would have been scaled with  2 (  p  w 1  -  p  1 )  . A
verification of the original results presented has shown
that the experimental data have all been non-
dimensionalized with the measured upstream dynamic
pressure ( p  w 1  -  p  1 ), as originally proposed.

Again, as for Standard Configurations 1 and 4, an
inconsistency exists between the inlet and outlet flow
conditions. Some researchers have compensated this
by modifying the inlet flow angle and some by an
introduction of a stream tube contraction ratio. Others
have left the original values given, and show therefore
a less good correlation with the steady-state blade
surface pressure distribution. How much these
differences in the set-up of the theoretical steady-state
flow conditions make out for the time-dependent flow
is unclear.

Please note that cases 21 and 22 below are for the
same flow conditions, with the only difference being
the steady-state stagnation pressure. This can give
some indications about stagnation pressure influence
and the experimental accuracy and should be
considered while analyzing the results.

Sidén [1991a,c] presents results from a Navier-Stokes
solver on incidence angles 2o, 4o and 6o on this
standard configuration. He shows a large unsteady
pressure in the leading edge region where the
experiments indicate a larger value than predictions
with a linearized potential model. The viscous solver
gives however a considerable overshoot compared to
the data. Still, these results indicate the importance of
considering viscous effects also at fairly low incidence
angles on compressor blades with sharp leading
edges. Széchényi [1991] points out that the viscous

separation bubble can be well trend wise predicted by
a recently developed coupled inviscid/boundary layer
code at ONERA [Soize, 1992]. Some of these results
have been incorporated in the present data base (see
appendix A4).

Upper surface Lower surface
(Suction side) (Pressure side)

Point x/c y/c y/c
1 0. 0. 0.
2 0.0124 0.0016 -0.0016
3 0.0250 0.0018 -0.0018
4 0.0500 0.0026 -0.0026
5 0.0750 0.0033 -0.0033
6 0.1000 0.0041 -0.0041
7 0.1500 0.0053 -0.0053
8 0.2000 0.0062 -0.0062
9 0.2500 0.0079 -0.0079
10 0.3000 0.0101 -0.0101
11 0.3500 0.0103 -0.0103
12 0.4000 0.0111 -0.0111
13 0.4500 0.0119 -0.0119
14 0.5000 0.0124 -0.0124
15 0.5500 0.0128 -0.0128
16 0.6000 0.0133 -0.0133
17 0.6500 0.0135 -0.0135
18 0.7000 0.0135 -0.0135
19 0.7500 0.0128 -0.0128
20 0.8000 0.0116 -0.0116
21 0.8500 0.0098 -0.0098
22 0.9000 0.0076 -0.0076
23 0.9500 0.0048 -0.0048
24 1.0000 0. 0.

Chord: c = 0.090 m
L.E. radius/c = T.E. radius/c =0.002

Table 3.5.1: Fifth standard configuration: Dimensionless
airfoil coordinates [Bölcs and Fransson, 1986, p. 125]
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Time averaged Time dependent parameters Flow
Aeroelastic M1 i pw1 p2/pw1 Re1 α or h xα/c f k
sample case (-) (o) (bar) (-) (-) (rad or -) (-) (Hz) (-)
1 0.5 2 1.4 0.84 1.4x106 0.00524 0.5 200 0.37 Attached
2 " 4 " 0.86 " " " " " "
3 " 6 " 0.87 " " " " " Part. separated
4 " 4 " 0.86 " " " 75 0.14 Attached
5 " " " " " " " 125 0.22 "
6 " " " " " " " 300 0.54 "
7 " " " " " " " 550 1.02 "
8 " 6 " 0.87 " " " 75 0.14 Part. separated
9 " " " " " " " 125 0.22 "
10 " " " " " " " 300 0.56 "
11 " " " " " " " 550 1.02 "
12 " 8 " 0.87 " " " 200 0.37 "
13 " 10 " 0.88 " " " " " Fully separated
14 " 12 " 0.89 " " " " " "
15 " 10 " 0.88 " " " 75 0.14 "
16 " " " " " " " 125 0.22 "
17 " " " " " " " 300 0.56 "
18 " " " " " " " 550 1.01 "
19 0.6 " " 0.84 1.6x106 " " 200 0.31 "
20 0.7 " " 0.80 1.7x106 " " " 0.27 "
21 0.8 " " 0.77 1.8x106 " " " 0.24 "
22 " " 2.0 " " " " " 0.23 "
23 0.9 " " 0.72 2.0x106 " " " 0.21 "
24 1.0 " " 0.69 2.1x106 " " " 0.19 "
25 0.5 6 1.4 0.88 1.4x106 " 0.0 125 0.22 Part. separated
26 " " " 0.87 " " 0.92 " " "
27 " 10 " 0.87 " " 0.0 " " Fully separated
28 " " " 0.88 " " 0.92 " " "
29 " 6 " 0.87 " 0.001 heaving 200 0.37 Part. separated
30 " 10 " 0.88 " " " " " Fully separated
• Sample cases 12-30 are new.
• Only the center blade is oscillated. The others are fixed.
• The y-position of the pitch axis is yα=0. for aeroelastic sample cases 1-28 above.
• Cases 29-30 are normal-to-chord heaving oscillations.
• The difference between cases 21 and 22 consists of a different inlet stagnation pressure.
Table 3.5.2: Fifth standard configuration: Experimental values for 30 recommended aeroelastic sample cases
[Bölcs and Fransson, 1986, p. 126].

3.6      Sixth standard configuration  

No modifications have been made to this standard
configuration. All results, and a discussion thereof, are
found in the 1986 report [Bölcs and Fransson, 1986].
A listing of all the results are found in appendix A3.

The compressible dynamic pressure has been used in
the definition of the pressure coefficients by all
participating researchers.

3.7      Seventh standard configuration (compressor cascade in supersonic flow).  

The seventh standard configuration (Fig. 3.7.1 and
Tables 3.7.1-2) was tested at Detroit Diesel Allison,
and included in the workshop report by courtesy of the
sponsoring agent, D. R. Boldman at NASA Lewis
Research Center [Boldman, 1983; Riffel and
Rothrock, 1980]. A question as regards to the validity
of the profile coordinates did arise at the 1991
Aeroelasticity meeting. These have been verified

[Boldman, 1991], and it is confirmed that the originally
presented blade coordinates were correct. The
agreement between the data and the predictions is, at
the present time, not satisfactory for any of the 12
aeroelastic sample cases. It is probable that some of
the discrepancies comes from the viscous effects in
the experiment, some from experimental accuracy and
some from the prediction models, but not enough
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predictions have been performed to analyze either the
data or predictions for supersonic cascades with
thickness. At the present time it is thus proposed to
keep this standard configuration, and the
corresponding aeroelastic sample cases, in its original
form.

It should be pointed out that, as with the other
experimental Standard Configurations, the pressure
coefficients are scaled with the steady-state upstream
dynamic pressure ( p  w 1  -  p  1 ). As far as the authors
are aware, all predicted results have been presented
with this dynamic pressure in the pressure coefficient
definitions.

The Reynolds number of the experiments were not
given in the original report [Bölcs and Fransson,
1986], but are now included. They are situated in the
range 1.1-1.6•106 [Riffel and Rothrock, 1980, p. 11]
for the performed tests.

Gerolymos et al [1990] have presented calculations on
this geometry. A stream sheet contraction of 0.85 was
introduced for these computations in order to get a
reasonable agreement with the steady-state outflow
data. Trend wise agreement can be found in the
unsteady pressures on the blade surfaces, and the
experimental and numerical stability limits of the
cascade agree fairly well.

Upper surface Lower surface
Point (=Suction surface) (=Pressure surface)
No. x/c y/c x/c y/c
1 0. -0.0029 0. -0.0029
2 0.0026 -0.0004 0.0027 -0.0056
3 0.0278 0.0015 0.0279 -0.0066
4 0.0655 0.0041 0.0657 -0.0079
5 0.1032 0.0065 0.1035 -0.0092
6 0.1410 0.0087 0.1412 -0.0103
7 0.1788 0.0107 0.1790 -0.0113
8 0.2165 0.0124 0.2168 -0.0123
9 0.2543 0.0139 0.2546 -0.0131
10 0.2921 0.0152 0.2923 -0.0138
11 0.3299 0.0162 0.3301 -0.0144
12 0.3551 0.0168 0.3552 -0.0148
13 0.3929 0.0175 0.3930 -0.0152
14 0.4307 0.0179 0.4308 -0.0155
15 0.4685 0.0181 0.4685 -0.0158
16 0.5063 0.0181 0.5063 -0.0159
17 0.5441 0.0179 0.5440 -0.0159
18 0.5820 0.0174 0.5818 -0.0158
19 0.6198 0.0167 0.6195 -0.0156
20 0.6576 0.0158 0.6573 -0.0153
21 0.6828 0.0150 0.6824 -0.0151
22 0.7205 0.0137 0.7202 -0.0146
23 0.7583 0.0122 0.7580 -0.0140
24 0.7961 0.0105 0.7958 -0.0133
25 0.8338 0.0087 0.8336 -0.0124
26 0.8716 0.0067 0.8714 -0.0112
27 0.9093 0.0047 0.9092 -0.0098
28 0.9471 0.0026 0.9470 -0.0082
29 0.9848 0.0003 0.9848 -0.0063
30 0.9974 -0.0005 0.9974 -0.0057

31 1.0000 -0.0029 1.0000 -0.0029
Chord: c = 0.0762 m (=3.00 inches)
L.E. radius/c = 0.0027
T.E. radius/c = 0.0027

Table 3.7.1: Seventh standard configuration:
Dimensionless airfoil coordinates [Bölcs and Fransson,
1986, p. 155].
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Working fluid: Air
d = 0.034 c = 0.0762 m span = 0.0762 m
τ = 0.855 camber = -1.3o γ = 61.55o

β1 = 64.0o M1 = 1.315 α = 0.06-0.2o 

Vibration in pitch, (xα,yα)=(0.5,0.0) f = 710->730 Hz k = variable

Fig. 3.7.1: Seventh standard configuration: Cascade geometry [Bölcs and Fransson, 1986, p. 154].

3.8      Eighth standard configuration (flat plate cascades at different flow conditions).  

As flat plate configurations are the most important to
compare against as regards to the numerical
completeness and accuracy of non-analytical
prediction models, it is important that such
configurations cover as wide a scope as possible,
especially as regards to Mach number variations. The
number of aeroelastic sample cases will thus forcibly
be large, but this is not a major problem as the
analytical flat plate solutions used as baseline
comparisons are usually fairly fast, and researchers
who may want to compare a numerical result against
an analysis will only choose the domain of current
interest and perform a few calculations.

The 35 original aeroelastic sample cases will be kept
(Fig. 3.8.1 and Table 3.8.1). The time-dependent
cases 36 to 42, corresponding to some of the earlier
cases but with a reduced frequency of k=0.5 instead
of k=1.0, have been added. This lower reduced
frequency (k=0.5) was recommended as the higher
reduced frequency showed some differences, which
may eventually be attributed to some numerical
effects, between the different prediction models. To

these aeroelastic test cases are added two
supplementary steady-state conditions (Figs. 3.8.2).
These, denoted as aeroelastic test cases 43-54 and
suggested by Dr. Verdon, are the well known
"Cascades A and B" as defined by Verdon [1973] and
Verdon and McCune [1975]. These cascade
configurations were originally carefully selected to
highlight wave reflections in supersonic flow and have
been used frequently in the past as comparison for a
number of analyses. They have provided useful
insight into the physical phenomena of unsteady
supersonic flow on vibrating flat plates and interesting,
often positive, results from the comparisons. It is
believed that they also in the future should be of
special interest as baseline comparisons for numerical
models for supersonic flow, also for supersonic
leading edge locus configurations.

As far as the present authors are aware, all pressure
coefficient results have been presented with the
incompressible dynamic pressure, (ρ-_•v-_2/2), as
non-dimensionalized value.
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Aeroel. Time-Averaged Conditions Time-Dep.
Sample M1 Normal γ τ k σ
Case (-) shock? (ο) (-) (-) (ο)
1 Incomp. - 60 0.75 1.0 90
2 " - 45 " " "
3 " - 30 " " "
4 " - 0 " " "
5 0.5 - 60 " " "
6 0.6 - " " " "
7 0.7 - " " " "
8 0.8 - " " " "
9 0.9 - " " " "
10 0.95 - " " " "
11 0.8 - 45 " " "
12 " - 30 " " "
13 " - 0 " " "
14 " - 60 0.5 " "
15 " - " 1.0 " "
16 1.1 - " 0.75 " "
17 " at LE " " " "
18 " at TE " " " "
19 1.2 - " " " "
20 " at LE " " " "
21 " at TE " " " "
22 1.3 - " " " "
23 " at LE " " " "
24 " at TE " " " "
25 1.4 - " " " "
26 " at LE " " " "
27 " at TE " " " "
28 1.5 - " " " "
29 " at LE " " " "
30 " at TE " " " "
31 1.3 - " 0.5 " "
32 " - " 1.0 " "
33 " at LE " 0.5 " "
34 " " " 1.0 " "
35 " " 45 0.75 " "
36 Incomp. - 60 0.75 0.5 "
37 0.5 - " " " "
38 0.7 - " " " "
39 0.8 - " " " "
40 1.3 - " " " "
41 1.4 - " " " "
42 1.5 - " " " "
43 ="A" 1.345 - 59.5 0.7886 0.5 0
44 " - " " " 60
45 " - " " " 120
46 " - " " " 180
47 " - " " " 240
48 " - " " " 300
49 ="B" 1.281 - 63.4 0.6711 0.5 0
50 " - " " " 60
51 " - " " " 120
52 " - " " " 180
53 " - " " " 240
54 " - " " " 300
Table 3.8.1: Eighth standard configuration: 54
recommended aeroelastic sample cases [Bölcs and
Fransson, 1986, p. 168; Verdon and McCune, 1975].

Further information and interesting results on
"Cascades A and B" have been presented by, among
others, Gerolymos et al [1990b], Whitehead [1990],
Fleeter and Hoyniak [1989], Topp and Fleeter [1986],
Verdon [1977a,b]. More results on flat plates have
been presented by several authors the last few years,
among them Giles and Haimes [1991], Namba and
Toshimitsu [1990], Huff [1989], Huff and Reddy
[1989], Bakhle et al [1989], Verdon [1989a], and
Schroeder and Fleeter [1989], to mention just a few.
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d = 0.0 c = 0.1 m
τ = 0.5->1.0 camber = 0o γ = 0->63.4o

i = 0o M1 = 0->1.5 α = 2.0o 

Vibration in pitch, (xα,yα)=(0.5,0.0) σ = variable k = 0.5, 1.0

Fig. 3.8.1: Eighth standard configuration: General cascade geometry [Bölcs and Fransson, 1986, p. 168].

a: Verdon "Cascade A" b: Verdon "Cascade B"
Fig. 3.8.2: Eighth standard configuration: Geometry of cascades "A" and "B" from Verdon and McCune [1975, p.2].
Included are also the leading and trailing edge wave configurations for aeroelastic sample cases 43-54.

3.9      Ninth standard configuration (double circular arc cascades at different flow conditions).  

The ninth standard configuration is a continuation of
the eighth, but includes both thickness and camber
effects. The geometry of the blades was proposed by
Dr. J. M. Verdon from United Technologies Research
Center (Fig. 3.9.1). At the present time it is proposed
to keep the originally defined 21 aeroelastic sample
cases for further studies (Table 3.9.1). However, it has
been noted by the calculations done up to now that
the high reduced frequency (k=1.0) gave some
unexpected numerical problems which should not be
the main purpose of the investigation. Furthermore,
this high reduced frequency (based on half-chord) is
not of extreme practical interest today. The same
configurations are thus proposed, as sample cases
22-42, at the lower reduced frequency of k=0.5.

The results presented are, as far as the authors’ are
aware of, all presented with the incompressible

dynamic pressure, (ρ-_•v-_2/2), as non-
dimensionalized value.

Among others, Whitehead [1990], Li et al [1990], Huff
[1989] and Verdon [1989a] have presented numerical
results on unsteady flow through vibrating DCA
cascades, and Buffum and Fleeter [1989a,b, 1988]
and Giordano and Fleeter [1990] have presented
experimental data.

The conclusions to be drawn are that promising
results exist on this standard configuration, but that
some unexplained effects still exist. The agreement
between different prediction models is usually not as
good as one would wish when the inlet flow Mach
numbers are high or the blade thickness non
negligible.
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Symmetric/flat-bottomed circular arc profiles
Equation:
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sgn ( H ) = ± 1 for H > 0 / H < 0; (  )+ = upper surface; (  )- = lower surface
Maximum thickness at x = 0.5 d = 0.01 - 0.1 c = 0.1 m
τ = 0.75 γ = 45o, 60o camber = 0o  (for symmetric profiles)
i = 0o (for M1 < 1. ) α = 2.0 o M1 = variable ( 0.0 -> 1.5)
k = 1.0 σ = 90o Vibration in pitch around (xα,yα) = (0.5, camberline)

Fig. 3.9.1: Ninth standard configuration: Cascade geometry [Bölcs and Fransson, 1986, p. 180].

 Time-Averaged Conditions Time-Dep.
 M1 γ (ο) β1(ο) H+ (-) H- (-) d (-) k (-) σ (ο)
1 0.0 60 -60 0.01 0.01 0.02 1.0 90
2 " " " 0.02 0.02 0.04 " "
3 " " " 0.03 0.03 0.06 " "
4 " " " 0.05 0.05 0.10 " "
5 0.5 " " 0.01 0.01 0.02 " "
6 0.7 " " 0.005 0.005 0.01 " "
7 " " " 0.01 0.01 0.02 " "
8 " " " 0.015 0.015 0.03 " "
9 " " " 0.02 0.02 0.04 " "
10 0.8 " " 0.01 0.01 0.02 " "
11 1.3 " " " " " " "
12 1.4 " " " " " " "
13 1.5 " " " " " " "
14 0.0 45 -45 " " " " "
15 0.5 " " " " " " "
16 0.7 " " " " " " "
17 0.8 " " " " " " "
18 0.5 " -45 0.05 0.0 0.05 " "
19 0.7 " " " " " " "
20 0.8 " " " " " " "
21 0.9 " " " " " " "

 Time-Averaged Conditions Time-Dep.
 M1 γ (ο) β1(ο) H+ (-) H- (-) d (-) k (-) σ (ο)
22 0.0 60 -60 0.01 0.01 0.02 0.5 90
23 " " " 0.02 0.02 0.04 " "
24 " " " 0.03 0.03 0.06 " "
25 " " " 0.05 0.05 0.10 " "
26 0.5 " " 0.01 0.01 0.02 " "
27 0.7 " " 0.005 0.005 0.01 " "
28 " " " 0.01 0.01 0.02 " "
29 " " " 0.015 0.015 0.03 " "
30 " " " 0.02 0.02 0.04 " "
31 0.8 " " 0.01 0.01 0.02 " "
32 1.3 " " " " " " "
33 1.4 " " " " " " "
34 1.5 " " " " " " "
35 0.0 45 -45 " " " " "
36 0.5 " " " " " " "
37 0.7 " " " " " " "
38 0.8 " " " " " " "
39 0.5 " -45 0.05 0.0 0.05 " "
40 0.7 " " " " " " "
41 0.8 " " " " " " "
42 0.9 " " " " " " "

Table 3.9.1: Ninth standard configuration: 42 recommended aeroelastic sample cases [Bölcs and Fransson, 1986, p. 181].
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3.10        Tenth standard configuration (Modified cambered NACA 0006 cascade at subsonic and transonic flow  
conditions).  

The tenth Standard Configuration, included by
proposal of Dr. J. M. Verdon at the United
Technologies Research Center [1987a,c], is a two-
dimensional compressor cascade of modified NACA
0006 profiles that operates at subsonic inlet and exit
conditions. The geometry is given by Verdon [1987a]
and is repeated here for convenience.

The cascade has a stagger angle, γ,  of 45o and a
gap/chord ratio, τ, of unity. The blades are constructed
by superimposing the thickness distribution of a
modified NACA four digit series airfoil on a circular arc
camber line. The thickness distribution is given by:
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where HT is the nominal blade thickness. The
coefficient of the x4 in eq. (3.10.1) differs from that
used in the standard NACA airfoil definition (i.e., -
1.015) so that the example blades will close in as
wedge-shaped trailing edges.

The camber distribution is given by:
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where HC (>0) is the height of the camber-line at
midchord and
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is the radius of the circular arc camber line. The
surface coordinates of the reference blade are
therefore given by:
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where the signs + and - refer to the upper (suction)
and lower (pressure) surfaces, respectively, and
θ=tan-1(dC/dx). For the present example we set
HT=0.06 and HC=0.05 to study the unsteady
aerodynamic response of a vibrating cascade of
cambered NACA 0006 airfoils.

We consider two different steady-state inlet operating
conditions. In the aeroelastic cases 1-16 the inlet
Mach number, M1, and flow angle, β1, are 0.7 and -
55o, respectively; for cases 17-32, M1=0.8 and β1=-
58o (see Table 3.10.1). The flow through the cascade
is assumed to satisfy a Kutta condition at blade trailing
edges and, therefore, only inlet flow information must

be specified. For M1=0.7 and β1=-55o, the mean or
steady flow through the cascade is entirely subsonic;
for M1=0.8 and β1=-58o it is transonic with a normal
shock occurring in each blade passage.

As aeroelastic test cases we consider single-degree-
of-freedom blade heaving, normal to chord, and
pitching motions at four different frequencies, k=0.25,
0.50, 0.75 and 1.0, and at interblade phase angles
lying in the range -π_σ_π. The amplitude of the
heaving motion, h, is 0.01; that of the pitching motion,
α, is 2o. The blade pitching axis lies at midchord, i.e.
(xα,yα)=(0.5,0.05).

We are interested in the following aerodynamic
response information for each of the two inlet
operating conditions given, at reduced frequencies of
k=0.25, 0.50, 0.75 and  1.0 (see Table 3.10.1 for
details):

1: The time-averaged blade surface pressure
coefficient, )(xcp  and Mach number.

2: a: Amplitude, c p   x , and phase lead angle, Φ  p    x ,
of the unsteady blade surface pressure
coefficient for heaving and pitching motions at
σ=0o and σ=90o.

b: Amplitude, ∆ c p   x , and phase lead angle,
Φ   ∆  p   x  , of the unsteady blade surface
pressure difference coefficient for heaving and
pitching motions at σ=0o and σ=90o.

3: a: The amplitude, c  l   , and phase lead angle, Φ  l   ,
of the unsteady lift coefficient per unit
amplitude vs interblade phase angle for the
heaving motions at  -π ≤ σ ≤ π.

b: The amplitude, c  m   , and phase lead angle,
Φ  m   , of the unsteady moment coefficient per
unit amplitude vs interblade phase angle for
the pitching motions at  -π ≤ σ ≤ π.

4: The aeroelastic damping coefficient, Ξ, vs
interblade phase angle for the heaving and
pitching motions at  -π ≤ σ ≤ π.

Usab and Verdon [1990, 1989b, 1987a,c], and
Whitehead [1990] have already presented results on
this cascade. Results from other prediction models
were also recently presented [Huff, 1991; Hall, 1991].
Some very promising results have been obtained
(these will be included in the complete updated report
presently in preparation).
When comparing these results with each other it must
be considered that no analytical results exist. Only the
mutual agreement between several similar theoretical
methods can thus indicate the accuracy of the models.
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1.0 0.8 0.6 0.4 0.2 0.0 

y 0.15  

0.10  

0.05  

0.00  

-0.05 

Stagger angle: γ =45o  Gap/chord: τ =1.0 Pitch axis: (xα,yα) = (0.5,0.05)
Reduced frequency: k = variable Interblade phase angle: σ = variable Camber: _22.8o

Fig. 3.10.1: Tenth standard configuration: Modified cambered NACA 0006 cascade.

Time averaged Time dependent
Test M1 β1 α h σ k
case (-) (o) (o) (-) (o) (-)
1 0.7 -55 2 --- 0 0.25
2 " " " --- 90 "
3 " " " --- 0 0.50
4 " " " --- 90 "
5 " " " --- 0 0.75
6 " " " --- 90 "
7 " " " --- 0 1.0
8 " " " --- 90 "
9 " " --- 0.01 0 0.25
10 " " --- " 90 "
11 " " --- " 0 0.50
12 " " --- " 90 "
13 " " --- " 0 0.75
14 " " --- " 90 "
15 " " --- " 0 1.0
16 " " --- " 90 "

Time averaged Time dependent
Test M1 β1 α h σ k
case (-) (o) (o) (-) (o) (-)
17 0.8 -58 2 --- 0 0.25
18 " " " --- 90 "
19 " " " --- 0 0.50
20 " " " --- 90 "
21 " " " --- 0 0.75
22 " " " --- 90 "
23 " " " --- 0 1.0
24 " " " --- 90 "
25 " " --- 0.01 0 0.25
26 " " --- " 90 "
27 " " --- " 0 0.50
28 " " --- " 90 "
29 " " --- " 0 0.75
30 " " --- " 90 "
31 " " --- " 0 1.0
32 " " --- " 90 "

Table 3.10.1: Tenth standard configuration: 32 recommended aeroelastic sample cases (the pitch axis is located at
(xα,yα)=(0.5,0.05)).
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Please note that, for this standard configuration, the
compressible dynamic pressure, (pw1-p1), as
originally proposed, has been used in the definition of
the pressure coefficients by Whitehead ("Method 2" in
the plots in Appendices A3 and A4), Hall ("Method

22") and Carstens ("Method 25"), whereas Verdon
("Method 3") and Huff ("Methods 23 and 26") have
employed the incompressible dynamic pressure as
reference value.

4. CONCLUSIONS AND RECOMMENDATIONS

A large amount of work has been put into the field of
unsteady flow through vibrating blade rows in the
period between 1987 and 1991, both on the
experimental and theoretical sides. The standard
configurations for unsteady flow through vibrating axial
flow turbomachine cascades, as originally defined,
have been used by many researchers with the aim to
compare prediction models against the data but also
to analyze results for parametric studies.
Unfortunately, due to the high computing costs
involved in parametric studies with numerical time-
dependent models, it is generally not possible to
perform such investigations in order to better
understand the physical reasons for aeroelastic
effects on a special blade configuration.

Possibilities to predict aeroelastic phenomena have
largely increased the last few years, to include
aspects such as three-dimensionality and/or viscosity.
In some cases these possibilities have overtaken the
detailed experimental data available. As an example
can be mentioned the prediction of time-dependent
viscous flow (in most cases today still with steady-  
state turbulence models) on oscillating cascades, and  
the enormous difficulties to accurately measure
enough details to be able to judge the quality of the
viscous numerical predictions. As computers become
more and more powerful, the computing cost will
reduce simultaneously as the cost of an experimental
investigation will increase. Comparisons between
different predictions will thus probably increase in
importance, at the expense of comparisons with
experimental data. Comparisons between theoretical
models, and with analytical solutions, are of large
interest and necessity, as only through such efforts
can the accuracy between the different models be
assessed and the theoretical assumptions validated in
detail. Only experimental test cases can, on the other
hand, give information about the validity of all
assumptions being made in the predictions. It is thus
necessary to accurately measure, in detail, three-
dimensional, transonic and viscous, flow effects in
both linear and annular cascades, at realistic reduced
frequencies, in the near future. This is an extremely
difficult and expensive task and all contributions in this
regard will be warmly welcomed. In this procedure it
must however not be forgotten that two-dimensional
aeroelastic problems are far from understood, and
that basic comparisons, such as against different flat
plate analyses, are of extreme importance to establish
the fundamental validity of any model.

Although great improvements are presently  made in
the field of numerical computations of unsteady flow, it
must be kept in mind that a general theory that can
treat the subsonic through supersonic flow domain, on
compressors, fans and turbines, including viscous
effects is still very far away.

All the configurations discussed in the present study
(and a large majority of all investigations performed on
unsteady flow) consider rigid profiles, both in span-
and chordwise directions. It is regularly shown by
several authors that the strip theory assumption is of
limited usefulness and that three-dimensional span
wise effects can be of large importance. Furthermore,
as it in the future will be important to also consider
higher modes than pure bending and pitching, coupled
and chord-wise non-rigid blade vibrations at high
frequencies is a large challenge.

Prediction of aeroelastic phenomena of the new
generation of swept fan blades will be necessary. The
use of composite blades will open up new aeroelastic
challenges and will probably couple the unsteady
aerodynamics and the structural mechanics parts in
turbomachinery closer together (as on aircraft
structures) than what is presently the case.

From the above it can be concluded that the data
collected as the "Standard Configurations" will be of
use also in the next future, while new experiments
must be initiated for the validation of the next
generation of prediction models7. For these the exact
treatment of unsteady shock waves and unsteady
local separations seem to be the present most
challenging theoretical parts before going into details
about global separation.

Due to the success of the present comparative study,
it has regularly been suggested that similar standard
configurations should be defined also for gust
response. This idea was concretely put forward during
the panel discussion on the "Standard Configurations
on Unsteady Flow Through Vibrating Axial-Flow
Turbomachine Cascades" at the Aeroelasticity
meeting in Notre Dame on September 15-19, 1991,
through a suggestion that the same geometries as

                                                
7 For this to be achieved, it has been proven useful to have all the existing

experimental data and analyses in a common data base, often using the
same format for the presentation of the results. It is suggested to continue
to include new data and analyses into the data base as such results
become available.
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used for the cascades in the present study should be
employed [Atassi, 1991]. This would help to avoid
many problems, such as the previously mentioned
difficulties in experimental blade coordinates, which by
now to some extent are known on the present
standard configurations.
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INTRODUCTION

Several prediction models have been applied to the
standard configurations during the years. The ones
that are included in the present report are identified in
Table A1.1. A brief introduction to each of the models
are given below, whereas the reader is referred to the
different articles mentioned in the text for details.

Method Name/Affiliation Stand. Config.
 Computed

1 Smith+Whitehead/ 1, 2, 5, 8,10
Cambridge University

2 D. S. Whitehead/ 5, 8, 9, 10
Cambridge University

3 J. M. Verdon/ 1, 5, 8, 9, 10
United Technologies
Research Center

4 M. Atassi/ 1
University of Notre Dame

5 P. Salaün 1, 7, 8
ONERA

6 S. Zhou/ Beijing 1, 2, 5
Institute of Aeronautics
and Astronautics

7 S. Newton 1, 4, 7, 8
Rolls Royce, plc

8 V. Carstens 1
DFVLR-AVA

9 F. Molls/ NASA Lewis 8
Research Center

10 S. Kaji 6
University of Tokyo

14 J. M. R. Graham 1
Imperial College

18 H. Joubert 7
SNECMA

19 M. Namba 6, 8
Kushuy University

20 L. He 4
University of Cambridge

21 L. He 5, 7
University of Cambridge

22 K. Hall 10
Duke University

23 D. Huff 5, 10
NASA Lewis

24 H. E. Gallus 4
Technical University,
Aachen

25 V. Carstens 4, 10
DLR-Göttingen

26 D. Huff 10
NASA Lewis

27 E. Széchényi 5
ONERA

Table A1.1:   Aeroelastic Prediction Models

METHOD 1:
 LINSUB (Courtesy of D. S. Whitehead, 1985)  

The program calculates the unsteady two-dimensional
linearized subsonic flow in cascades in traveling wave
formulation, using the theory published by Smith
[1972]. The blades are assumed to be flat plates
operating at zero incidence.

Both the pressure jump and lift and moment
coefficients are computed for different options:
• Translational vibration of the blades normal to their

chord
• Torsional vibration of the blades about the origin at

the leading edge.
• Sinusoidal wakes shed from some obstructions

upstream, which move relative to the cascade in
question.

• Incoming acoustic waves, coming from
downstream

• Incoming acoustic waves, coming from upstream.

Furthermore, the condition of acoustic resonance is
calculated.

METHOD 2:
Finite Element Method (FINSUP) (Courtesy of D. S.  

Whitehead, 1985)  

The numerical field method program has three
sections: mesh generation, analysis of steady flow,
and analysis of unsteady flow. The mesh generation
and analysis of steady flow have been described by
Whitehead and Newton [1985]. The analysis of
unsteady flow has been described by Whitehead
[1990].

A typical mesh is composed of triangular finite
elements covering a strip, one blade spacing high,
with the blade in the middle. The fluid is assumed to
be a perfect gas with no viscosity or thermal
conductivity, and the flow is assumed to be adiabatic,
reversible and irrotational, so the equations are those
for a velocity potential. The potential is continuous,
except for a jump across the wake. In order to
calculate in regions of supersonic flow it is necessary
to use "upwind" densities; that means that instead of
taking the density at the element under consideration,
the density is taken from the neighboring element in
the most nearly upwind direction. This device
stabilizes the computation in supersonic flow, but is
unnecessary in subsonic flow. Weak shock waves are
well simulated, but are "potential" since there is no
entropy increase across the shock, and they are
smeared over a few elements. The flow is matched to
a linearized solution at the inlet and outlet faces of the
computational domain, and is arranged to repeat
between corresponding points on the top and bottom
faces. The conditions specified to the program are
effectively the inlet circumferential velocity and the
jump in potential between the bottom left and the
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bottom right corners of the domain. This choice of
input conditions uniquely specifies the location of a
shock in a cascade of flat plates at zero incidence,
which no specification of flow conditions at either inlet
or outlet can achieve. The non-linear equations are
then solved by the Newton-Raphson technique.
Convergence is usually achieved in three or four
iterations, although up to about twelve may be
necessary in difficult cases with supersonic inlet
velocities. The nodes are numbered in such a way as
to minimize the bandwidth of the dividing matrix at
each iteration, so the method is fast. Good agreement
with other methods of calculating steady transonic
cascade flow in cascades has been demonstrated.

The program then goes on to the third stage in which
small unsteady perturbations of the steady flow due to
vibration of the blades is analyzed.

Solid body motion of the blades is assumed, either in
bending or torsion. The unsteady calculation is
therefore similar to one more iteration of the steady
calculation, except that the potential perturbation is
complex, and the boundary conditions are different.
Again the flow at the inlet and exit faces is matched to
a linearized solution, which includes propagating or
decaying acoustic waves and in the downstream flow
the effect of the unsteady wake shed from the trailing
edge. The repeat condition between corresponding
points on the top and bottom surfaces is arranged to
give the required phase difference between
neighboring blades. It is again necessary to use
upwind densities in regions of supersonic flow in order
to stabilize the calculation. A difficulty arises due to
the term

( r  ·  ∆ v  ) ·  n (A1.1)

for the boundary condition at the blade surface. A
modified perturbation potential is defined by

(A1.2)

where r is given by

  r = h  +  α  x  R (A1.3)

and this equation is now extended over the whole
domain of calculation, and not just at the blade
surface. This device gets rid of the awkward term in
the boundary condition at the blade surface, and also
eliminates a similar awkward term in the calculation of
the pressure perturbation at the surface. The
unsteady pressure perturbations at the surface are
then integrated to give the axial and circumferential
blade forces and the moment.

METHOD 3:
Linearized Unsteady Aerodynamic Analyses (LINFLO)  

(Courtesy of J. M. Verdon, 1985)  

The isentropic and irrotational flow of a perfect gas
through a two-dimensional cascade of vibrating airfoils
is considered. The blades are undergoing identical
harmonic motions at frequency ω, but with a constant
phase angle σ between the motions of adjacent
blades. It is assumed that the flow remains attached
to the blade surfaces and that the blade motion is the
only source of unsteady excitation.

The flow through the cascade is thus governed by the
field equations, written in form of the time-dependent
velocity potential [Verdon and Usab, 1985]. In addition
to the field equations, the flow must be tangential to
the moving blade surfaces and acoustic waves must
either attenuate or propagate away from or parallel to
the blade row in the far field. Finally, we also require
that the mass and tangential momentum be
conserved across shocks and that pressure and the
normal component of the fluid velocity be continuous
across the vortex-sheet unsteady wakes which depart
from the blade trailing edges and extend downstream.

In order to limit the computing resources required to
solve the equation system, a small-unsteady-
disturbance assumption is involved. Thus, the blades
are assumed to undergo small-amplitude unsteady
motions around an otherwise steady flow. The
resulting first-order or linearized unsteady flow
equation is solved subject to both boundary conditions
at the mean positions of the blade, shock and wake
surfaces and requirements on the behavior of the
unsteady disturbances far upstream and downstream
from the blade row.

Moreover, because of the cascade geometry and the
assumed form of the blade motion, the steady and
linearized unsteady flows must exhibit blade-to-blade
periodicity. Thus, the numerical resolution of the
steady and the linearized unsteady flow equations can
be restricted to a single extended blade-passage
region of the cascade.

METHOD 4:
Aerodynamic Theory for Two-Dimensional Unsteady  

Cascades of Oscillating Airfoils in Incompressible  
Flows (Courtesy of H. Atassi, 1985)  

A complete first order theory is developed for the
analysis of oscillating airfoils in cascade in a uniform
upstream flow. The flow is assumed to be
incompressible and irrotational. The geometry of the
airfoil is arbitrary. The angle of attack of the mean flow
and the stagger and solidity of the cascade can
assume any prescribed set of values. The airfoils
have a small harmonic oscillation about their mean
position with a constant interblade phase angle. Both
translational and rotational oscillations are considered.

The boundary-value problem for the unsteady
component of the velocity is formulated in terms of
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sectional analytic functions which must satisfy the
impermeability condition along the airfoils surfaces,
the Kutta condition at the trailing edges of the airfoils,
and the jump condition along the airfoils wakes. The
expression for the velocity jump in the wakes is
derived to a multiplicative constant from the condition
of pressure continuity across the wakes. The velocity
field is split into two components: one satisfying the
oscillating motion along the airfoils surfaces and the
other accounts for a normalized jump condition along
the wakes. This leads to two singular integral
equations in the complex plane. The two equations
are coupled by Kelvin’s theorem of conservation of the
circulation around the airfoils and their wakes. The
integral equations are solved by a collocation
technique.

The results obtained from this theory show that the
airfoil geometry and loading and the cascade stagger
and solidity strongly affect the aerodynamic forces
and moments acting upon oscillating cascades. As a
result stability and flutter boundaries are significantly
modified for highly loaded cascades.

METHOD 5:   
(Courtesy of P. Salaün, 1985)  

The two-dimensional cascade is an infinite array of
thin blades, the fluid is an inviscid perfect gas and the
flow is assumed to be irrotational and isentropic. The
blades are performing harmonic motions of so small
amplitude that the theory can be linearized about the
undisturbed, uniform flow, and the supersonic theory
is restricted to the case of subsonic leading edge
locus.

The pressure difference between the two sides of the
blades are taken into account when they are replaced
by sheets of pressure dipoles in both subsonic and
supersonic flow. Then, the perturbation velocity
potential is expressed and the boundary conditions on
the blades give an integral equation where the
unknown is the pressure difference on the reference
blade, and the right hard side the angle of attack. This
integral equation is solved numerically.

METHOD 6:   
Zhou Sheng (1985)  

A finite difference method is used to solve the
unsteady velocity potential equation. The velocity
potential is split into one steady and one unsteady
part, and the unsteady small perturbation is solved
with a relaxation procedure.

METHOD 7:
Extended FINSUP (Courtesy of R. D. Cedar, 1985)  

The flutter calculation used at Rolls Royce is an
extension of the finite element method developed by
D.S. Whitehead (Method 2 above). Since the
programs introduction to Rolls Royce in 1981 it has
been continually developed and evaluated [see for
example Newton and Whitehead, 1985]. The finite
element mesh generator has been fully automated to
the extent that it now contains "rules" about how good
a mesh is. Using these "rules" the mesh construction
parameters are automatically changed until a
satisfactory mesh is obtained.

The steady flow calculation has been extended from
being purely two-dimensional to include the quasi-
three-dimensional effects of blade rotation and
variations of streamtube height and streamline radius
[Cedar and Stow, 1985a]. This has allowed the
program to be included in the quasi-three-dimensional
design system used at Rolls Royce [Jennions and
Stow, 1984]. Improvements to the upwinding scheme
has been made that produce sharp shocks. A coupled
boundary layer calculation (using both direct and
semi-inverse coupling) has been developed [Newman
and Stow, 1985] as well as a design or inverse
calculation [Cedar and Stow, 1985b]. This allows
transonic blades to be designed, including the
removal of shocks, to give a controlled diffusion.

The unsteady flow calculation has been extended to
include the quasi-three-dimensional effects. It has
been found that it is essential to include the effect of
variation in streamtube height if test data is to be
predicted correctly.

METHOD 8:
Theoretical Flutter Investigation on a Cascade in  

Incompressible Flow (Courtesy of V. Carstens, 1985)  

I:    Calculation of unsteady aerodynamic coefficients
The calculation of the unsteady aerodynamic
coefficients due to harmonic bending and torsion of
the cascade's blades is to replace each blade's
surface and its wake by a distribution of vorticity. The
kinematic boundary condition and the law of vorticity
transport allow the formulation of the flow problem as
an integral equation, the solution of which yields the
correct value of the unknown unsteady blade vorticity.
Two important items in the formulation of the problem
should be mentioned:
• The prescribed harmonic motion of the entire

cascade unit is a fundamental mode, in which all
blades perform oscillations with the same
amplitude but with a constant phase lag from blade
to blade (interblade phase angle).

• The influence of the steady flow on the unsteady
quantities is obtained by a special linearizing
procedure.

The unsteady pressure distribution and the
aerodynamic lift and moment coefficients are
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calculated as a function of the blade vorticity by
means of Bernouilli’s equation.

II:   Flutter analysis
The flutter analysis is done on the basis of two-
degree-of freedom model, which allows for bending
perpendicular to the chord and torsion around a given
elastic axis. The rearrangement of the two linearized
equations of motion for a blade section in non
dimensional matrix form yields the formulation of the
flutter problem as a non linear eigenvalue problem.
Stability boundaries are found by determining the real
eigenvalues of the matrix equation in an iterative
procedure if a set of elasto-mechanical and
aerodynamic parameters is prescribed. The result of
each flutter calculation is a stability curve in a reduced
frequency - interblade phase angle diagram, the
maximum of which yields the absolute stability
boundary and hence the non dimensional flutter
speed for the given configuration.

METHOD 9:   
(Courtesy of F. Molls, 1985)  

The model allows for two shock waves to occur in a
tip blade passage in which the inlet Mach number is
supersonic. A weak oblique shock from the leading
edge lies off the pressure surface of the upper blade
and its angle is great enough that the shock intersects
the lower blade. Off the suction surface of the lower
blade there is a normal wave at the trailing edge
which intersects the upper blade. The oblique shock
angle corresponds to the pressure ratio but not to the
metal angle at the leading edge. The model blade,
however, has a wedge angle in agreement with the
pressure ratio and inlet Mach number. Where the
oblique shock strikes the adjacent blade, the flow
turns from the inlet direction through the wedge angle
to become parallel to the pressure surface; thus, as
observed in actual flow, there is no reflection.

There are two options in the model. Either the
pressure and suction surfaces continue uniformly to a
blunt trailing edge, or the trailing surfaces are tapered
to a specified thickness at the trailing edge. In the
former case the differential equations for the unsteady
component of the flow have constant coefficients and
may be solved analytically. In the latter option, the
mean flow in one portion of the blade passage is a
slowly varying flow and numerical integration of the
disturbance equations is required. A more detailed
description with a diagram and references to
experimental examples of the modeled flow is given
by Molls [1985].

METHOD 10:
Semi-Actuator Disk Method (Courtesy of S. Kaji,  

1985)  

The semi-actuator disk model converts an actual
blade row to a continuous cascade by inserting many
fictious blades in between and parallel to the original
blades. Aerodynamic loading and inter-blade phase
change are all shared by inserted blades. Thus the
change of physical quantity in the cascade direction is
given by crossing each blade stepwise, and we can
treat the flow inside a blade channel one-
dimensionally.

Method of Analysis:
Solve first linearized governing equations of mass,
momentum and energy for the upstream, inside and
downstream field of the cascade separately. We have
a pressure wave in the upstream field, two pressure
waves going back and forth (and an entropy wave if
the total pressure loss is present) inside the cascade
and also we have a pressure wave, (an entropy wave)
and a vorticity wave due to blade oscillation in the
downstream field. The unknown amplitude of each
wave is related to the known amplitude of blade
oscillation through boundary conditions at the leading
edge plane and the trailing edge plane of the cascade.
They are as follows: At the leading edge plane we use
mass flow continuation, relative total enthalpy
continuation, and the condition of total pressure loss
change in accordance with flow incidence. At the
trailing edge plane we can assume a smooth
continuation of all physical quantities, i.e., two
components of velocity, pressure and density.

The aerodynamic forces acting on blades can be
evaluated by use of the momentum principle applied
to the control volume taken for a blade channel.

Merit and Demerit:
Aerodynamic loading
Total-pressure-loss
Arbitrary direction of oscillation
Not large inter-blade phase angle

Method of Analysis
Solve equations for upstream field, cascade channel
and downstream field separately combine 3 fields by
proper boundary conditions on leading edge and
trailing edge planes use momentum principle to
evaluate aerodynamic forces acting on blades

METHOD 14:   
Discrete Vortex (Cloud-in-Cell) Method for Unsteady  
Cascade Flows (Courtesy of J. M. R. Graham and J.  

Basuki, 1985)  

This method represents shed vortex wakes in two-
dimensional incompressible flow by large numbers of
discrete point vortices which are convected by the
local velocity field. In the cloud-in-cell method the
vorticity associated with the moving point vortices is
transferred to a fixed Eulerian mesh [Christiansen,
1973]. The streamfunction and hence velocity
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distribution is calculated from the vorticity on this
mesh using a standard fast Poisson solver.

The presented version of this method used to
calculate unsteady flow through a cascade represents
the individual aerofoils in the cascade by a boundary
integral method [Kennedy and Marsden, 1976] which
uses piecewise constant vorticity panels. The
appropriate streamfunction boundary condition is
satisfied on the surface of each aerofoil by summing
the contributions of the surface vorticity panels
(including implied periodicity) and the mesh
streamfunction. The boundary condition on the mesh
also assumes periodicity along the cascade with the
interblade phase angle limited to a small integral
number of aerofoils within the mesh flow field. The
computation follows the evolution of an unsteady flow
by forward time marching, tracking the positions of the
vortices.

The program has been used to compute cases with
superimposed unsteady flow, upstream wakes, and
blade vibration. In the latter case when the interblade
phase angle is non-zero, exact application of the
boundary integral method requires the influence
functions to be recalculated at each time-step to
account for changes in the relative blade to blade
displacement. This has not been done in the present
program for reasons of computational cost. The
present boundary condition includes the relative
motion but is evaluated on the mean surface of each
blade and is therefore limited to small displacement
amplitudes compared to the blade spacing.

The program evaluates time histories of surface
pressures and forces induced on the aerofoils by the
unsteady flows. Since the method involves time
marching from an impulsive start fairly long
computations are required to reach a final state free of
initial transients.

METHOD 18:
(Courtesy of H. Joubert, 1985)  

A model was developed at SNECMA for calculating
the unsteady aerodynamic flow through vibrating
cascades in view of studying supersonic flutter in axial
flow compressors. The calculation deals with an ideal
fluid, in unsteady transonic flow, including shocks,
through a quasi three-dimensional cascade. The
explicit MacCormack scheme was used to numerically
solve the unsteady Euler’s equations on a blade
surface. An 80x15 grid points mesh was used which
was displaced to follow the blade motion [Joubert,
1984].

This model has been applied to the seventh standard
configuration of the workshop on aeroelasticity in
turbomachine-cascades. Two cases were studied, the
first one corresponding to an exit Mach number of
1.25 and the second one to an exit Mach number of

0.99. The unsteady aerodynamic damping coefficients
for both cases are represented and the magnitude
and phase lead of blade surface pressure coefficient
for two interblade angles are plotted.

METHOD 19:
Method of Calculating Unsteady Aerodynamic Forces  

on Two-Dimensional Cascades (Courtesy of M.  
Namba, 1985)  

The basic assumptions of the method are that the flow
should be inviscid and isentropic. The gas should be
perfect and the blade oscillations small. The blades
are represented by pressure dipoles of fluctuating
strength.

(A.1.4)

and the problem is reduced to an integral equation for
∆p(xo):

∆  p   x  0   K  x -  x  0  
 0

 c

 d  x  0 = i  ω α  ( x ) + U  α ’ ( x ) 
(A.1.5)

The Kernel function K(x-xo) is resolved into:
• a singular part K(S)(x-xo) in a closed form
• a regular part K(R)(x-xo) in an infinite series form of

uniform convergence. (A sufficient convergence
with truncation at the 30th term is confirmed).

The dipole distribution function ∆p(xo) is then
expanded into a mode function series.

The flow can be either sub- or supersonic:
• Subsonic cascade

∆  p   x  0   =  P  k  
k = 0 

K - 1 

  Y  k (  ϕ  )
(A1.6)

where
- xo = 0.5c(1-cosϕ)
- Yo(ϕ) = cot(0.5ϕ)
- Yk(ϕ) = sin(kϕ) (k_1) (Glauert series)

• Supersonic cascade

(A1.7)
where

- r=reflection number (this technique corresponds
to the Nagashima & Whitehead technique)

-
g   x  0   =  P  k  Y  k   ϕ     , with  x  0 = 0.5 c   1 - cos  ϕ     

k = 0 

K-1 

  

(A1.8)
- (equivalent to shifted

Chebyshev polynomials)

The integral equation is converted into algebraic
equation for Pk (k=0, 1, 2,...K-1)
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P  k    YK k    
k = 0 

K -  1

    x  j   K  x -  x  0   d  x  0 = i  ω α  ( x j ) + U  α ’ ( x j )

; j = 1, 2, ... , K   
(A1. 9)

where

YK k    x  j   =  Y  k  

(A1.10)

with the first term calculated analytically and the
second numerically integrated with about 240
integration points from xo = 0 to c). In the present
cases, calculations were conducted with six control
points (K=6).

METHOD 20:
Euler solution for unsteady flows around oscillating  

blades (From He [1989])  

The time-marching method is based on the two- and
quasi three-dimensional unsteady Euler equations.
The numerical integration follows with a finite volume
scheme with a cell-vertex discretization in space and
a two-step Runge-Kutta integration in time. Extra
fluxes due to the deformation of the moving finite
volumes are directly included in the conservation
equations in the physical coordinate system. A zonal
moving grid technique is used, in which only sub-
regions near oscillating blades are moved to fit both
the moving (blade) coordinates and fixed regions. See
He [1989] for details.

METHOD 21:
Inviscid-viscous coupled solution for unsteady flows  

through vibrating blades (From He and Denton [1991])  

A coupled approach between an inviscid Euler and a
integral boundary layer solution is used for quasi
three-dimensional unsteady flows induced by vibrating
blades. For unsteady laminar and turbulent boundary
layers, steady corrections are adopted in a quasi-
steady way to close the integral boundary layer
model. To conduct the coupling between the inviscid
and viscous solutions for strongly interactive flows, the
unsteady Euler and integral boundary layer equations
are simultaneously time-marched using a multi-step
Runge-Kutta scheme, and the boundary layer
displacement effect is accounted for by a first order
transpiration model. The time-resolved coupling
method converges at conditions with considerable
boundary layer separation. For further details, see He
and Denton [1991a,b].

METHOD 22:
A deforming grid variational principle and finite  
element method for computing unsteady small  

disturbance flows in cascades (Courtesy of K. Hall,  
1991)  

 The method describes a variational principle with the
harmonic small disturbance behavior of the full two-
dimensional potential equations around a nonlinear
mean flow. Included is the effect of a deforming
computational grid. A finite element technique is used
to discretize the variational principle and the resulting
discretized equations are solved using the LU
decomposition. Exact far-field non reflecting boundary
conditions are employed. The method is described in
detail by Hall [1991].

METHOD 23:
Flutter analysis of cascades using a two-dimensional  

Euler solver (Courtesy of D. Huff, 1991 )  
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The aerodynamic forces are obtained from an
unsteady, two-dimensional cascade solver based on
the Euler equations. The solver uses a time marching
flux-differencing scheme and the flutter stability is
analyzed in both frequency and time domains. In the
frequency domain method the blades are oscillated
harmonically for a given flow condition, oscillation
frequency and interblade phase angle. In the time
domain approach the aerodynamic and the structural
equations are simultaneously integrated. The method
is described in detail by Huff [1989] and Huff et al
[1989, 1991].

METHOD 24:
Two-dimensional Euler solver (H. E. Gallus, 1989)  

The non-linear two-dimensional Euler equations in
conservative law form are solved by a combined
method consisting of MacCormack’s explicit predictor-
corrector scheme at the interior points and a
characteristic method for the time-dependent
boundary conditions. The flow is considered subsonic
and the method can handle unsteadinesses due to
oscillating cascades and incoming wakes. See Kau
and Gallus [1989] for details.

METHOD 25:
(V. Carstens, 1991 )  

The method computes the unsteady transonic two-
dimensional inviscid flow through cascades with
harmonically oscillating blades. The calculation of the
flow field is based on a non-linear Euler solver using
flux vector splitting on a modified H-grid. The
implementation of the inlet and outlet boundary
conditions is closely related to the theory of
characteristics, and implemented in a non-reflective
way. The method is described in detail by Carstens
[1991].

METHOD 26:
Flutter analysis of cascades using a two-dimensional  

Euler solver (Courtesy of D. Huff, 1991 )  

Identical to Method 23 above, but with the blades as
flat plates.

METHOD 27:
Strong coupling between a perfect fluid and a  

boundary layer (C. Soize, ONERA. Obtained from E.  
Széchényi, ONERA, 1991 )  

The method treats cascaded blades (sharp-leading
edges) in two dimensions at positive incidence, where
the flow on the suction surface is separated at the
leading edge and reattached on the profile. The
perfect gas equations are based on the small

perturbation Euler equations, with the use of a non-
structured finite element mesh. See Soize [1992] for
details.
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"Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow

Turbomachine-Cascades"
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Compiled by

T. H. Fransson and J. M. Verdon

Appendix A2: Key to read the input files for the plot program "AEROEL"

CONTENTS:

1: DIFFERENT REPRESENTATION POSSIBILITIES
2: INPUT VALUES FOR THE PLOT PROGRAM "AEROEL"

2.1: INFORMATION IN THE BEGINNING OF ALL FILES
2.2: PLOT-TYPES 1, 8 and 9:
2.3: PLOT-TYPE 2:
2.4: PLOT-TYPE 3:
2.5: PLOT-TYPES 4, 5, 6 and 10:
2.6: PLOT-TYPE 7:
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1:      DIFFERENT REPRESENTATION POSSIBILITIES  

The plot program used for the Standard Configurations can give 10 different representations for each standard
configuration, namely:
• Type 1: Steady-state pressure distribution along blade chord (c  p = f ( x ).
• Type 2: Time-dependent pressure coefficient amplitude and phase angle distribution along blade chord

(c  p = f ( x ), Φ  p = f ( x ).
• Type 3: Time-dependent pressure difference coefficient amplitude and phase angle distribution along blade

chord (∆   c  p = f ( x ), Φ   ∆  p = f ( x ).
• Type 4: Time-dependent lift coefficient amplitude and phase angle distribution along any chosen parameter

(c  L = f ( parameter ), Φ  L = f (parameter ).
• Type 5: Time-dependent force coefficient amplitude and phase angle distribution along any chosen

parameter ( ).
• Type 6: Time-dependent moment coefficient amplitude and phase angle distribution along any chosen

parameter (c  M = f (parameter ),  Φ  M = f ( parameter).

• Type 7: Time-dependent aerodynamic damping coefficient along any chosen parameter (Ξ  = f ( parameter).
• Type 8: Time-dependent local aerodynamic damping coefficient amplitude and phase angle distribution

along blade chord (Ξ  local  = f ( x ).

• Type 9: Steady-state isentropic Mach number distribution along blade chord (M  is  = f ( x ).
• Type 10: Time-dependent drag coefficient amplitude and phase angle distribution along any chosen

parameter (c  D = f ( parameter ), Φ  D = f (parameter ).

2: INPUT VALUES FOR THE PLOT PROGRAM "AEROEL"  

2.1:               Information in the beginning of all files  

It should be pointed out that the file is formatted, so the exact position of all the information is important. Integers
must thus be positioned as justified to the right.

Line 1: General information
• Columns 1-5: ISTCON = Standard Configuration number
• Columns 6-10: NEWOLD = 0 for old nomenclature (< 1.1. 1985)

= 1 for new nomenclature (>1.1. 1986)

Line 2: Types and quantity of plots desired.
• Columns 1-5: N1 = Number of plots of type 1 (c  p = f ( x ).

• Columns 6-10: N2 = Number of plots of type 2 ( ).

• Columns 11-15: N3 = Number of plots of type 3 (∆   c  p = f ( x ), Φ   ∆  p = f ( x ).

• Columns 16-20: N4 = Number of plots of type 4 (c  L = f ( parameter ), Φ  L = f (parameter ).

• Columns 21-25: N5 = Number of plots of type 5 (c  F = f ( parameter ), Φ  F = f ( parameter).

• Columns 26-30: N6 = Number of plots of type 6 (c  M = f (parameter ),  Φ  M = f ( parameter).

• Columns 31-35: N7 = Number of plots of type 7 ( ).

• Columns 36-40: N8 = Number of plots of type 8 (Ξ  local  = f ( x ).

• Columns 41-45: N9 = Number of plots of type 9 (M  is  = f ( x ).

• Columns 46-50: N10 = Number of plots of type 10 (c  D = f ( parameter ), Φ  D = f (parameter ).

Note that in the following all plots of a certain type must follow each other, and that it is not possible to mix
plots of different types.

- o - o - o - o - o -
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2.2:   Plot-types 1, 8 and 9:  

Lines 3-5: General information
• Columns 1-60: Text to identify the plot.
• Columns 61-65 on line 3: HUS = Upper blade surface thickness. Only for standard

configuration 9 and plot type 1.
• Columns 66-70 on line 3: HLS = Lower blade surface thickness. Only for standard

configuration 9 and plot type 1.

Line 6: Scales on y-axis
• Columns 1-5: ORDSYM(1) = Lowest value
• Columns 6-10: ORDSYM(2) = Value at 1/4 of scale
• Columns 11-15: ORDSYM(3) = Middle value
• Columns 16-20: ORDSYM(4) = Value at 3/4 of scale
• Columns 21-25: ORDSYM(5) = Highest value

Line 7:
• Columns 1-5: NPLOT = Number of experimental cp data on the upper blade surface.

NPLOT_20.

Lines 8-8a: Experimental data on the blade upper surface
• Columns 1-10: x(1) = x-value of first experimental data
• Columns 11-20: cp(1) = Experimental data in first point
• Columns 21-30: x(2) = x-value of 2nd experimental data
• Columns 31-40: cp(2) = Experimental data in second point
• Columns 41-50: x(3) = x-value of 3rd experimental data
• Columns 51-60: cp(3) = Experimental data in third point
• Columns 61-70: x(4) = x-value of 4th experimental data
• Columns 71-80: cp(4) = Experimental data in fourth point
-> This line is repeated until all NPLOT values are given.

Line 9:
• Columns 1-5: NPLOT = Number of experimental cp data on the lower blade surface.

NPLOT_20.

Lines 10-10a: Idem lines 8-8a, but on the blade lower surface.

Line 11: Indication about prediction model or end of results.
• Columns 1-5: -> "0" if no more results are to be plotted

-> Number of prediction model used (for definition, see Bölcs and
Fransson [1986, pp. 41-42])

• Columns 6-10: LTYPE = Identification of the line type to be plotted for this prediction model.
• Columns 11-15: NPLOT = Number of calculated data that follows.

Lines 12-12a: Results from prediction model in the same format as the data apart from the fact
that it is assumed that the prediction models use the same number of points on each blade surface.
The upper surface results are first given, and thereafter the lower surface results.

• Columns 1-80: Identical to lines 8-8a.

-> RETURN TO LINE 11!

Line 13: Indication about parameters to be written on the plot.
• Columns 1-5: NVAL = Number of parameters to be written in the list to the right on the plots.

NVAL must be _40.
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Lines 14-14a: Indication about values of the parameters on the plot.
• Columns 1-5: K = Number of first parameter (see below).
• Columns 6-10: VAL(K) = Value and dimension of first parameter.
• Columns 11-15: K = Number of 2nd parameter.
• Columns 16-20: VAL(K) = Value and dimension of 2nd parameter.
• Columns 21-25: K = Number of 3rd parameter (see below).
• Columns 26-30: VAL(K) = Value and dimension of 3rd parameter.
• Columns 31-35: K = Number of 4th parameter.
• Columns 36-40: VAL(K) = Value and dimension of 4th parameter.
• Columns 41-45: K = Number of 5th parameter (see below).
• Columns 46-50: VAL(K) = Value and dimension of 5th parameter.
• Columns 51-55: K = Number of 6th parameter.
• Columns 56-60: VAL(K) = Value and dimension of 6th parameter.
• Columns 1-60 on following lines: Continuation of the rest of the NVAL parameters.

1: c 2: τ 3: γ 4: xα 5: yα 6: M1 7: β1 8: i
9: M2 10: β2 11: hx 12: hy 13: α 14: ω 15: k 16: δ

17: σ 18: c  p 19: Φ  p
 ( us ) 

20: Φ  p
 ( ls ) 

21: c  p 22: 23: ∆ c  p 24: Φ  L

25: c  L 26: Φ  M 27: c  M 28: σ 29: Ξ   ↓ 30: c  w  ↑ 31: x 32: Φ  F

33: c  F 34: d
Table A2.1: Key to list of parameters on each plot.

Return to line 3 and repeat the information for a total of N1, N8 or N9 times.

- o - o  - o - o - o - o -
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2.3:   Plot-type 2:  

Lines 3-5: General information
• Columns 1-60: Text to identify the plot.

Line 6:
• Columns 1-5: NPLOT = Number of experimental cp data on the upper blade surface.

NPLOT_20.

Lines 7-7a: Experimental data on the blade upper surface
For all standard configurations apart from number 4:  

• Columns 1-10: x(1) = x-value of first experimental data
• Columns 11-20: cp(1) = Amplitude of experimental data in first point
• Columns 21-30: φp(1) = Phase angle of experimental data in first point
• Columns 31-40: x(2) = x-value of experimental data in second point
• Columns 41-50: cp(2) = Amplitude of experimental data in 2nd point
• Columns 51-60: φp(2) = Phase angle of experimental data in  2nd point
-> This line is repeated until all NPLOT values are given.

For standard configuration 4:  
• Columns 1-10: x(1) = x-value of first experimental data
• Columns 11-20: cp(1) = Amplitude of experimental data in first point
• Columns 21-30: φp(1) = Phase angle of experimental data in first point
• Columns 31-40: cp(1)-conf.int = 95% confidence interval of cp(1)
• Columns 41-50: φp(1)-conf.int = 95% confidence interval of φp(1)
-> This line is repeated until all NPLOT values are given.

Line 8:
• Columns 1-5: NPLOT = Number of experimental cp data on the lower blade surface.

NPLOT_20.

Lines 9-9a: Idem lines 7-7a, but on the blade lower surface.

Line 10: Scales on y-axis
• Columns 1-5: ORDSYM(1) = Lowest value
• Columns 6-10: ORDSYM(2) = Value at 1/4 of scale
• Columns 11-15: ORDSYM(3) = Middle value
• Columns 16-20: ORDSYM(4) = Value at 3/4 of scale
• Columns 21-25: ORDSYM(5) = Highest value

Line 11: Indication about prediction model or end of results.
• Columns 1-5: -> "0" if no more results are to be plotted

-> Number of prediction model used (for definition, see Bölcs and
Fransson [1986, pp. 41-42])

• Columns 6-10: LTYPE = Identification of the line type to be plotted for this prediction model.
• Columns 11-15: NPLOT = Number of calculated data that follows.

Lines 12-12a: Results from prediction model in the same format as the data apart from the fact
that it is assumed that the prediction models use the same number of points on each blade surface.
The upper surface results are first given, and thereafter the lower surface results.

• Columns 1-80: Identical to lines 7-7a.

-> RETURN TO LINE 11!

Line 13: Indication about parameters to be written on the plot.
• Columns 1-5: NVAL = Number of parameters to be written in the list to the right on the plots.

NVAL must be _40.
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Lines 14-14a: Indication about values of the parameters on the plot.
• Columns 1-5: K = Number of first parameter (see below).
• Columns 6-10: VAL(K) = Value and dimension of first parameter.
• Columns 11-15: K = Number of 2nd parameter.
• Columns 16-20: VAL(K) = Value and dimension of 2nd parameter.
• Columns 21-25: K = Number of 3rd parameter (see below).
• Columns 26-30: VAL(K) = Value and dimension of 3rd parameter.
• Columns 31-35: K = Number of 4th parameter.
• Columns 36-40: VAL(K) = Value and dimension of 4th parameter.
• Columns 41-45: K = Number of 5th parameter (see below).
• Columns 46-50: VAL(K) = Value and dimension of 5th parameter.
• Columns 51-55: K = Number of 6th parameter.
• Columns 56-60: VAL(K) = Value and dimension of 6th parameter.
• Columns 1-60 on following lines: Continuation of the rest of the NVAL parameters.
• For key to list of parameters on each plot, see table A2.1:

Return to line 3 and repeat the information for a total of N2 times.
- o - o  - o - o - o - o -
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2.4:   Plot-type 3:  

Lines 3-5: General information
• Columns 1-60: Text to identify the plot.

Line 6:
• Columns 1-5: NPLOT = Number of experimental ∆cp data on the blade surface.

NPLOT_20.

Lines 7-7a: Experimental data on the blade surface
• Columns 1-10: x(1) = x-value of first experimental data
• Columns 11-20: ∆cp(1) = Amplitude of experimental data in first point
• Columns 21-30: φ∆p(1) = Phase angle of experimental data in first point
• Columns 31-40: x(2) = x-value of experimental data in second point
• Columns 41-50: ∆cp(2) = Amplitude of experimental data in 2nd point
• Columns 51-60: φ∆p(1) = Phase angle of experimental data in  2nd point
-> This line is repeated until all NPLOT values are given.

Line 8: Scales on y-axis
• Columns 1-5: ORDSYM(1) = Lowest value
• Columns 6-10: ORDSYM(2) = Value at 1/4 of scale
• Columns 11-15: ORDSYM(3) = Middle value
• Columns 16-20: ORDSYM(4) = Value at 3/4 of scale
• Columns 21-25: ORDSYM(5) = Highest value

Line 9: Indication about prediction model or end of results.
• Columns 1-5: -> "0" if no more results are to be plotted

-> Number of prediction model used (for definition, see Bölcs and
Fransson [1986, pp. 41-42])

• Columns 6-10: LTYPE = Identification of the line type to be plotted for this prediction model.
• Columns 11-15: NPLOT = Number of calculated data that follows.

Lines 10-10a: Results from prediction model in the same format as the data.
• Columns 1-80: Identical to lines 7-7a.

-> RETURN TO LINE 9!

Line 13: Indication about parameters to be written on the plot.
• Columns 1-5: NVAL = Number of parameters to be written in the list to the right on the plots.

NVAL must be _40.

Lines 14-14a: Indication about values of the parameters on the plot.
• Columns 1-5: K = Number of first parameter (see below).
• Columns 6-10: VAL(K) = Value and dimension of first parameter.
• Columns 11-15: K = Number of 2nd parameter.
• Columns 16-20: VAL(K) = Value and dimension of 2nd parameter.
• Columns 21-25: K = Number of 3rd parameter (see below).
• Columns 26-30: VAL(K) = Value and dimension of 3rd parameter.
• Columns 31-35: K = Number of 4th parameter.
• Columns 36-40: VAL(K) = Value and dimension of 4th parameter.
• Columns 41-45: K = Number of 5th parameter (see below).
• Columns 46-50: VAL(K) = Value and dimension of 5th parameter.
• Columns 51-55: K = Number of 6th parameter.
• Columns 56-60: VAL(K) = Value and dimension of 6th parameter.
• Columns 1-60 on following lines: Continuation of the rest of the NVAL parameters.

• For key to list of parameters on each plot, see table A2.1:

Return to line 3 and repeat the information for a total of N3 times.

- o - o  - o - o - o - o -
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2.5:   Plot-types 4, 5, 6 and 10:  

Lines 3-5: General information
• Columns 1-60: Text to identify the plot.

Line 6: Symbol and scale on  horizontal axis
• Columns 1-5 (integer): ISYMB = Symbol, according to Table A2.1, to be represented

and written on horizontal axis.
• Columns 6-10 (real): ABSSYM(1) = Lowest value of scale on horizontal axis.
• Columns 11-15 (real): ABSSYM(2) = Middle value of scale on horizontal axis.
• Columns 16-20 (real): ABSSYM(3) = Highest value of scale on horizontal axis.

Line 7:
• Column 1 (I1): NSYM = Number for identification of symbol to be plotted. NSYM should

only take the values 3, 4, 5, 7, 1 or 2 in order not to charge the
figure too much.

= 0 for end of information.
• Columns 2-5 (I4): NPLOT = Number of experimental data on the blade surface. NPLOT_20.
• Columns 6-10 (I5): NVAR = Number of variables.
• Columns 11-16 (A5): VAL = Value of the variables.

Lines 8-8a: Experimental data as function of the parameter chosen
• Columns 1-10: Par(1) = Parameter-value of first experimental data
• Columns 11-20: A (1) = Amplitude of experimental data in first point
• Columns 21-30: φ (1) = Phase angle of experimental data in first point
• Columns 31-40: Par(2) = Parameter-value of experimental data in 2nd point
• Columns 41-50: A (2) = Amplitude of experimental data in 2nd point
• Columns 51-60: φ (2) = Phase angle of experimental data in 2nd point
-> This line is repeated until all NPLOT values are given.

-> Lines 7+8 are repeated until NSYM = 0
Line 9: Scale on vertical axis

• Columns 1-5: ORDSYM(1) = Lowest value
• Columns 6-10: ORDSYM(2) = Value at 1/4 of scale
• Columns 11-15: ORDSYM(3) = Middle value
• Columns 16-20: ORDSYM(4) = Value at 3/4 of scale
• Columns 21-25: ORDSYM(5) = Highest value

Line 10: Indication about prediction model or end of results.
• Columns 1-5: -> "0" if no more results are to be plotted

-> Number of prediction model used (for definition, see Bölcs and
Fransson [1986, pp. 41-42])

• Columns 6-10: LTYPE = Identification of the line type to be plotted for this prediction model.
• Columns 11-15: NPLOT = Number of calculated data that follows.

Lines 11-11a: Results from prediction model in the same format as the data.
• Columns 1-80: Identical to lines 8-8a.

-> RETURN TO LINE 10!

Line 12: Indication about parameters to be written on the plot.
• Columns 1-5: NVAL = Number of parameters to be written in the list to the right on the plots.

NVAL must be _40.
Lines 13-13a: Indication about values of the parameters on the plot.

• Columns 1-5: K = Number of first parameter (see below).
• Columns 6-10: VAL(K) = Value and dimension of first parameter.
• Columns 11-15: K = Number of 2nd parameter.
• Columns 16-20: VAL(K) = Value and dimension of 2nd parameter.
• Columns 21-25: K = Number of 3rd parameter (see below).
• Columns 26-30: VAL(K) = Value and dimension of 3rd parameter.
• Columns 31-35: K = Number of 4th parameter.
• Columns 36-40: VAL(K) = Value and dimension of 4th parameter.
• Columns 41-45: K = Number of 5th parameter (see below).
• Columns 46-50: VAL(K) = Value and dimension of 5th parameter.
• Columns 51-55: K = Number of 6th parameter.
• Columns 56-60: VAL(K) = Value and dimension of 6th parameter.
• Columns 1-60 on following lines: Continuation of the rest of the NVAL parameters.
• For key to list of parameters on each plot, see table A2.1:
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Return to line 3 and repeat the information for a total of N4, N5, N6 or N10 times.
- o - o  - o - o - o - o -
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2.6:   Plot-type 7:  

Lines 3-5: General information
• Columns 1-60: Text to identify the plot.

Line 6: Symbol and scale on  horizontal axis
• Columns 1-5 (integer): ISYMB = Symbol, according to Table A2.1, to be represented

and written on horizontal axis.
• Columns 6-10 (real): ABSSYM(1) = Lowest value of scale on horizontal axis.
• Columns 11-15 (real): ABSSYM(2) = Middle value of scale on horizontal axis.
• Columns 16-20 (real): ABSSYM(3) = Highest value of scale on horizontal axis.

Line 7: Scale to the left of vertical axis (cw)
• Columns 1-5: ORDSYM(1) = Lowest value
• Columns 6-10: ORDSYM(2) = Value at 1/4 of scale
• Columns 11-15: ORDSYM(3) = Middle value
• Columns 16-20: ORDSYM(4) = Value at 3/4 of scale
• Columns 21-25: ORDSYM(5) = Highest value

Line 8:
• Column 1 (I1): NSYM = Number for identification of symbol to be plotted. NSYM should

only take the values 3, 4, 5, 7, 1 or 2 in order not to charge the
figure too much.

= 0 for end of information.
• Columns 2-5 (I4): NPLOT = Number of experimental data on the blade surface. NPLOT_20.
• Columns 6-10 (I5): NVAR = Number of variables.
• Columns 11-16 (A5): VAL = Value of the variables.

Lines 9-9a: Experimental data as function of the parameter chosen
For all standard configurations apart from number 4:  

• Columns 1-10: Par(1) = Parameter-value of first experimental data.
• Columns 11-20: Ξ(1) = Experimental aerodynamic coefficient data in first point.
• Columns 21-30: Par(2) = Parameter-value of experimental data in 2nd point
• Columns 31-40: Ξ(2) = Experimental aerodynamic coefficient data in 2nd point.
• Columns 41-50: Par(3) = Parameter-value of experimental data in 3rd point
• Columns 51-60: Ξ(3) = Experimental aerodynamic coefficient data in 3rd point.
-> This line is repeated until all NPLOT values are given.

For standard configuration 4:  
• Columns 1-10: Par(1) = Parameter-value of first experimental data.
• Columns 11-20: Ξ(1) = Experimental aerodynamic coefficient data in first point.

• Columns 21-30: Ξ(1)-conf.int = 95% confidence interval of Ξ(1)
-> This line is repeated until all NPLOT values are given.

-> Lines 8+9 are repeated until NSYM = 0
Line 10: Scale to the right of vertical axis (Ξ)

• Columns 1-5: ORDSYM(1) = Lowest value
• Columns 6-10: ORDSYM(2) = Value at 1/4 of scale
• Columns 11-15: ORDSYM(3) = Middle value
• Columns 16-20: ORDSYM(4) = Value at 3/4 of scale
• Columns 21-25: ORDSYM(5) = Highest value

Line 11: Indication about prediction model or end of results.
• Columns 1-5: -> "0" if no more results are to be plotted

-> Number of prediction model used (for definition, see Bölcs and
Fransson [1986, pp. 41-42])

• Columns 6-10: LTYPE = Identification of the line type to be plotted for this prediction model.
• Columns 11-15: NPLOT = Number of calculated data that follows.

Lines 12-12a: Results from prediction model in the same format as the data.
• Columns 1-80: Identical to lines 8-8a.

-> RETURN TO LINE 11!
Line 13: Indication about parameters to be written on the plot.

• Columns 1-5: NVAL = Number of parameters to be written in the list to the right on the plots.
NVAL must be _40.
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Lines 14-14a: Indication about values of the parameters on the plot.
• Columns 1-5: K = Number of first parameter (see below).
• Columns 6-10: VAL(K) = Value and dimension of first parameter.
• Columns 11-15: K = Number of 2nd parameter.
• Columns 16-20: VAL(K) = Value and dimension of 2nd parameter.
• Columns 21-25: K = Number of 3rd parameter (see below).
• Columns 26-30: VAL(K) = Value and dimension of 3rd parameter.
• Columns 31-35: K = Number of 4th parameter.
• Columns 36-40: VAL(K) = Value and dimension of 4th parameter.
• Columns 41-45: K = Number of 5th parameter (see below).
• Columns 46-50: VAL(K) = Value and dimension of 5th parameter.
• Columns 51-55: K = Number of 6th parameter.
• Columns 56-60: VAL(K) = Value and dimension of 6th parameter.
• Columns 1-60 on following lines: Continuation of the rest of the NVAL parameters.
• For key to list of parameters on each plot, see table A2.1:

Return to line 3 and repeat the information for a total of N7 times.
- o - o  - o - o - o - o -
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Appendix A3: Listing of all values used on the plots
(these can be obtained on a floppy disk upon request)
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Appendix A4: Computer Plots of Results in the Study

The results presented in the following appendix follows exactly the scheme laid out for the presentation of previous
results in the workshop. The plot numbers shown correspond to the numbers of the plots in Appendix A5 of the
original workshop report [Bölcs and Fransson, 1986]. The figures in the present appendix can thus be put together
with the old appendix A5, with no loss of information. If the present plot numbers correspond to a number existing in
the old appendix A5, some new results (experimental or theoretical) have been added to the plot.

To facilitate the task for anyone who would like to compare the numerical values of the results (experimental or
theoretical) given in the workshop, the input files for all the plots are also given (Appendix A3). The key to read these
files is given (Appendix A2), and a floppy disk with all the numerical values can be obtained upon request.



Standard Configurations-1992 / Appendix A4 / T. H. Fransson and J. M. Verdon  /  6/21/01 A4 : 2

Fifth Standard Configuration

1: Case 1
2: Cases 2, 4-7
3: Cases 3, 8-11, 25-26, 29.
4: Case 12.
5: Cases 13, 15-18, 27-28, 30.
6: Case 14.
7: Case 19.
8: Case 20.
9: Case 21, pw1=1.4 bar.
10: Case 22, pw1=2.0 bar.
11: Case 23.
12: Case 24.
13: Cases 27-28,30.
Plots 7.5-1.1 to 7.5-1.13: Fifth standard configuration: Steady-state blade surface pressure distribution for aeroelastic sample
cases 1-30.

12: Case 12
13: Case 13
...
...
...
30: Case 30.
Plots 7.5-2.12 to 7.5-2.30: Fifth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
coefficient for aeroelastic sample cases 12-30.

12: Case 12
13: Case 13
...
...
...
30: Case 30.
Plots 7.5-3.12 to 7.5-3.30: Fifth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
difference coefficient for aeroelastic sample cases 12-30.

1: Function of i, M1=0.5, k= 0.37, cases 1-3, 12-14
2: Function of k, M1=0.5, i= 4, cases 2, 4-7
3: Function of k, M1=0.5, i= 6, cases 3, 8-11
4: Function of k, M1=0.5, i= 10, cases 13, 15-18
5: Function of k, M1=0.5, i= 4, cases 13, 19-24
Plots 7.5-5.12 to 7.5-5.30: Fifth standard configuration: Aerodynamic moment coefficient for aeroelastic sample cases 1-30.

1: Function of i, M1=0.5, k= 0.37, cases 1-3, 12-14
2: Function of k, M1=0.5, i= 4, cases 2, 4-7
3: Function of k, M1=0.5, i= 6, cases 3, 8-11
4: Function of k, M1=0.5, i= 10, cases 13, 15-18
5: Function of k, M1=0.5, i= 4, cases 13, 19-24
Plots 7.5-6.12 to 7.5-6.30: Fifth standard configuration: Aerodynamic damping coefficient for aeroelastic sample cases 1-30.
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Eighth Standard Configuration

36: Case 36
37: Case 37
...
...
...
54: Case 54.
Plots 7.8-2.36 to 7.5-2.54: Eighth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
coefficient for aeroelastic sample cases 26-54.

36: Case 36
37: Case 37
...
...
...
54: Case 54.
Plots 7.8-3.36 to 7.5-3.54: Eighth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
difference coefficient for aeroelastic sample cases 26-54.

8: Function of M, k= 0.5, cases 36-42
9: Function of σ,  cases 43-48
10: Function of σ,  cases 49-54
Plots 7.8-5.8 to 7.5-5.10: Eighth standard configuration: Aerodynamic moment coefficient for aeroelastic sample cases 36-
54.

8: Function of M, k= 0.5, cases 36-42
9: Function of σ,  cases 43-48
10: Function of σ,  cases 49-54
Plots 7.8-6.8 to 7.5-6.10: Eighth standard configuration: Aerodynamic damping coefficient for aeroelastic sample cases 36-
54.
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Ninth Standard Configuration

1: Cases 1-4, 22-25
2: Cases 5, 26
3: Cases 6-9, 27-30.
4: Cases 10, 31.
5: Cases 11, 32.
6: Cases 12, 33.
7: Cases 13, 34.
8: Cases 14, 35.
9: Cases 15, 36.
10: Cases 16, 37.
11: Cases 17, 38.
12: Case18, 39.
13: Cases 19, 40.
14: Cases 20, 41
15: Cases 21, 42.
Plots 7.9-1.1 to 7.9-1.15: Ninth standard configuration: Steady-state blade surface pressure distribution for aeroelastic
sample cases 1-42.

22: Case 22
23: Case 23
...
...
...
42: Case 42.
Plots 7.9-2.22 to 7.9-2.42: Ninth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
coefficient for aeroelastic sample cases 22-42.

22: Case 22
23: Case 23
...
...
...
42: Case 42.
Plots 7.9-3.22 to 7.9-3.42: Ninth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
difference coefficient for aeroelastic sample cases 22-42.

6: Function of M1, k= 0.5, cases 22, 26, 28, 31-34
7: Function of M1, k= 0.5, cases 35-38
8: Function of M1, k= 0.5, cases 39-42
9: Function of d,  cases 22-25
10: Function of d,  cases 27-30
Plots 7.9-5.6 to 7.9-5.10: Ninth standard configuration: Aerodynamic moment coefficient for aeroelastic sample cases 22-42.

6: Function of M1, k= 0.5, cases 22, 26, 28, 31-34
7: Function of M1, k= 0.5, cases 35-38
8: Function of M1, k= 0.5, cases 39-42
9: Function of d,  cases 22-25
10: Function of d,  cases 27-30
Plots 7.9-6.6 to 7.9-6.10: Ninth standard configuration: Aerodynamic damping coefficient for aeroelastic sample cases 22-42.



Standard Configurations-1992 / Appendix A4 / T. H. Fransson and J. M. Verdon  /  6/21/01 A4 : 5

Tenth Standard Configuration

1: Cases 1-16
2: Cases 17-32
Plots 7.10-1.1 to 7.10-1.2: Tenth standard configuration: Steady-state blade surface pressure distribution for aeroelastic
sample cases 1-32.

1: Case 1
2: Case 2
...
...
...
32: Case 32.
Plots 7.10-2.1 to 7.10-2.32:Tenth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
coefficient for aeroelastic sample cases 1-32.

1: Case 1
2: Case 2
...
...
...
32: Case 32.
Plots 7.10-3.1 to 7.10-3.32:Tenth standard configuration: Magnitude and phase lead of the unsteady blade surface pressure
difference coefficient for aeroelastic sample cases 1-32.

1: Heaving motion, M1=0.7, Function of σ, k=0.25, cases 9-10 +extra
2: Heaving motion, M1=0.7, Function of  σ, k=0.5, cases 11-12 +extra
3: Heaving motion, M1=0.7, Function of σ, k=0.75, cases 13-14 +extra
4: Heaving motion, M1=0.7, Function of  σ, k=1.0, cases 15-16 +extra
5: Heaving motion, M1=0.8, Function of σ, k=0.25, cases 25-26 +extra
6: Heaving motion, M1=0.8, Function of  σ, k=0.5, cases 27-28 +extra
7: Heaving motion, M1=0.8, Function of σ, k=0.75, cases 29-30 +extra
8: Heaving motion, M1=0.8, Function of  σ, k=1.0, cases 31-32+ extra
Plots 7.10-4.1 to 7.10-4.8: Tenth standard configuration: Aerodynamic lift coefficient for aeroelastic sample cases 9-16, 25-32.

1: Pitching motion, M1=0.7, Function of σ, k=0.25, cases 1-2+extra
2: Pitching motion, M1=0.7, Function of  σ, k=0.5, cases 3-4+extra
3: Pitching motion, M1=0.7, Function of σ, k=0.75, cases 5-6+extra
4: Pitching motion, M1=0.7, Function of  σ, k=1.0, cases 7-8+extra
5: Pitching motion, M1=0.8, Function of σ, k=0.25, cases 17-18+extra
6: Pitching motion, M1=0.8, Function of  σ, k=0.5, cases 19-20+extra
7: Pitching motion, M1=0.8, Function of σ, k=0.75, cases 21-22+extra
8: Pitching motion, M1=0.8, Function of  σ, k=1.0, cases 23-24+extra
Plots 7.10-5.1 to 7.10-5.8: Tenth standard configuration: Aerodynamic moment coefficient for aeroelastic sample cases 1-8,
17-24.

1: Heaving motion, M1=0.7, Function of σ, k=0.25, cases 9-10 +extra
2: Heaving motion, M1=0.7, Function of  σ, k=0.5, cases 11-12 +extra
3: Heaving motion, M1=0.7, Function of σ, k=0.75, cases 13-14 +extra
4: Heaving motion, M1=0.7, Function of  σ, k=1.0, cases 15-16 +extra
5: Heaving motion, M1=0.8, Function of σ, k=0.25, cases 25-26 +extra
6: Heaving motion, M1=0.8, Function of  σ, k=0.5, cases 27-28 +extra
7: Heaving motion, M1=0.8, Function of σ, k=0.75, cases 29-30 +extra
8: Heaving motion, M1=0.8, Function of  σ, k=1.0, cases 31-32+ extra
9: Pitching motion, M1=0.7, Function of σ, k=0.25, cases 1-2+extra
10: Pitching motion, M1=0.7, Function of  σ, k=0.5, cases 3-4+extra
11: Pitching motion, M1=0.7, Function of σ, k=0.75, cases 5-6+extra
12: Pitching motion, M1=0.7, Function of  σ, k=1.0, cases 7-8+extra
13: Pitching motion, M1=0.8, Function of σ, k=0.25, cases 17-18+extra
14: Pitching motion, M1=0.8, Function of  σ, k=0.5, cases 19-20+extra
15: Pitching motion, M1=0.8, Function of σ, k=0.75, cases 21-22+extra
16: Pitching motion, M1=0.8, Function of  σ, k=1.0, cases 23-24+extra
Plots 7.10-6.1 to 7.10-6.16:Tenth standard configuration: Aerodynamic damping coefficient for aeroelastic sample cases 1-32.
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